Figure B.1: Axial velocity distribution highlighting measurement region.
Figure B.2: Streamwise vortex velocity comparisons $S = 1.027$.

Figure B.3: Streamwise vortex velocity comparisons $S = 1.069$. Note: Some of the discrepancy between the simulation and experiment can be attributed to the duct window cutout (see Figure 4.10).
Figure B.4: Streamwise vortex velocity comparisons $S = 1.165$

Figure B.5: Streamwise vortex velocity comparisons $S = 1.226$. Note: Some of the discrepancy between the simulation and experiment can be attributed to the duct window cutout (see Figure 4.10).
Figure B.6: Streamwise vortex velocity comparisons $S = 1.342$

Figure B.7: Streamwise vortex velocity comparisons $S = 1.507$. Note: Some of the discrepancy between the simulation and experiment can be attributed to the duct window cutout (see Figure 4.10).
Figure B.8: Pressure distribution on propulsor unit
Figure B.9: Blade pressure (top) and skin friction (bottom) distribution on blade surface
Figure B.10: Photographs of cavitation vortex. Top: photo of cavitating vortex showing surface cavitation at minimum pressure as computed. Bottom: zooms in on surface cavitation. Courtesy of Naval Surface Warfare Center.
Figure B.11: Location of cutting planes. D, E, F, G correspond to $x/R = -0.025, 0.08, 0.2$ and 0.25 respectively.
Figure B.12: Pressure contour cuts taken at stations DEFG.
Figure B.13: Velocity contour cuts at stations D and E. (Velocities based on tip speed. $\bar{u} = 3.196 \bar{a}_\text{tip}$).
Figure B.14: Velocity contour cuts at stations F and G. (Velocities based on tip speed. \(\bar{u} = 3.196 a_{tip} \)).
Figure B.15: Simulation physics of cavitation inception $S = 1.027$ to $S = 1.185$
$S = 1.226$

$S = 1.342$

$S = 1.513$

Pressure Streamwise Velocity Crossflow Velocity

Figure B.16: Simulation physics of cavitation inception $S = 1.226$ to $S = 1.513$
Figure B.17: Streamwise velocity isosurface of vortex interaction (run20)
Figure B.18: Pressure comparison on duct for original design and concept1. The minimum pressure is moved closer to the leading edge of the blade, and the pressure in the vortex region is significantly increased.
Figure B.19: Vortex analysis method validation. Top: shows line integration circles for computing circulation. Bottom: shows comparisons of vortex analysis method, with experimental core, and also intrinsic swirl parameter.
Figure B.20: Demonstration of vortex analysis method. Top: shows the structured vortex grid extracted from the unstructured solution. Bottom: shows the tangential velocity distribution in the vortex core region. Note: areas are blanked where $r/R > 1.015$.