DESIGN, ASSEMBLY, AND ASSESSMENT OF AN EXPERIMENTAL APPARATUS TO MEASURE FOULING OF CONDENSER TUBES

By

Gregory Zdaniuk

A Thesis
Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering in the Department of Mechanical Engineering

Mississippi State, Mississippi

December 2003
DESIGN, ASSEMBLY, AND ASSESSMENT OF AN EXPERIMENTAL APPARATUS TO MEASURE FOULING OF CONDENSER TUBES

By

Gregory Zdaniuk

Approved:

Louay M. Chamra
Associate Professor of Mechanical Engineering
(Major Professor)

B. Keith Hodge
Professor of Mechanical Engineering
(Committee Member)

Carl James
Assistant Research Professor of Mechanical Engineering
(Committee Member)

Rogelio Luck
Associate Professor and Graduate Coordinator of Department of Mechanical Engineering

A. Wayne Bennett
Dean of the College of Engineering
This thesis discusses the design, construction, and debugging of an experimental apparatus to measure fouling in smooth and/or augmented copper alloy condenser tubes. In addition, guidelines and recommendations are made for construction of similar devices. Specification sheets of the system components, detailed design calculations, and photographs of the apparatus are included in the appendices.
ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my family members who have provided continuous support for my education. I would like to express my deepest appreciation to my major professor, Dr. Louay Chamra, for his valuable help and guidance in my research and education. I would also like to thank my graduate committee members, Dr. B. Keith Hodge and Dr. Carl James, for their advice and assistance in the preparation of this thesis. I furthermore want to recognize the help of Mr. Reese Yontz in implementing the LabVIEW program. He spent a lot of his valuable time setting up and explaining LabVIEW and SCXI systems to me. Finally, I would like to thank the Mississippi State University Department of Mechanical Engineering and its staff (especially Mr. Luke Nason, Mr. Victor Latham, and Mr. Seth Myers) for their dedication and outstanding service to the university and students.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>ii</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>iii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>vi</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>vii</td>
</tr>
<tr>
<td>CHAPTER</td>
<td></td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Fouling – A Brief Definition</td>
<td>1</td>
</tr>
<tr>
<td>Introduction to Cooling Towers and Enhanced Tubes</td>
<td>2</td>
</tr>
<tr>
<td>TRP-1205</td>
<td>5</td>
</tr>
<tr>
<td>Phase III of TRP-1205 – Objectives</td>
<td>7</td>
</tr>
<tr>
<td>Measuring Fouling in Heat Exchangers</td>
<td>9</td>
</tr>
<tr>
<td>II. EXPERIMENTAL APPARATUS DESIGN</td>
<td>12</td>
</tr>
<tr>
<td>Preliminary Data</td>
<td>12</td>
</tr>
<tr>
<td>Detailed Mechanical Design</td>
<td>12</td>
</tr>
<tr>
<td>System Overview</td>
<td>12</td>
</tr>
<tr>
<td>Piping</td>
<td>13</td>
</tr>
<tr>
<td>Test Section Shell Design</td>
<td>16</td>
</tr>
<tr>
<td>Valves</td>
<td>17</td>
</tr>
<tr>
<td>Mixing Tank</td>
<td>18</td>
</tr>
<tr>
<td>Water-cooling Heat Exchangers</td>
<td>18</td>
</tr>
<tr>
<td>Pressure Drop and Pump Selection</td>
<td>19</td>
</tr>
<tr>
<td>Vibration Isolators</td>
<td>20</td>
</tr>
<tr>
<td>Refrigerant Tanks</td>
<td>20</td>
</tr>
<tr>
<td>Rupture Discs</td>
<td>21</td>
</tr>
<tr>
<td>Refrigerant Heaters</td>
<td>21</td>
</tr>
<tr>
<td>CHAPTER</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Ring Heaters</td>
<td>22</td>
</tr>
<tr>
<td>Tape Heaters</td>
<td>22</td>
</tr>
<tr>
<td>Insulation</td>
<td>23</td>
</tr>
<tr>
<td>Data Acquisition System</td>
<td>23</td>
</tr>
<tr>
<td>Transducers</td>
<td>23</td>
</tr>
<tr>
<td>Thermocouples</td>
<td>23</td>
</tr>
<tr>
<td>Flow Meters</td>
<td>24</td>
</tr>
<tr>
<td>Pressure Transducers</td>
<td>24</td>
</tr>
<tr>
<td>Transducer Calibration</td>
<td>25</td>
</tr>
<tr>
<td>SCXI Modular System</td>
<td>25</td>
</tr>
<tr>
<td>Data Acquisition Program</td>
<td>27</td>
</tr>
<tr>
<td>Safety</td>
<td>29</td>
</tr>
<tr>
<td>III. EXPERIMENTAL APPARATUS ASSEMBLY</td>
<td>31</td>
</tr>
<tr>
<td>Supporting Structure</td>
<td>31</td>
</tr>
<tr>
<td>Apparatus Assembly</td>
<td>31</td>
</tr>
<tr>
<td>Power</td>
<td>32</td>
</tr>
<tr>
<td>IV. SYSTEM QUALIFICATION AND MODIFICATIONS</td>
<td>33</td>
</tr>
<tr>
<td>Supporting Structure</td>
<td>33</td>
</tr>
<tr>
<td>Shell Design Modification</td>
<td>33</td>
</tr>
<tr>
<td>Insulation</td>
<td>37</td>
</tr>
<tr>
<td>Mixing Tank</td>
<td>38</td>
</tr>
<tr>
<td>Data Acquisition System</td>
<td>38</td>
</tr>
<tr>
<td>Water-loop Heat Exchangers</td>
<td>39</td>
</tr>
<tr>
<td>Uncertainty Analysis</td>
<td>39</td>
</tr>
<tr>
<td>V. RECOMMENDATIONS</td>
<td>42</td>
</tr>
<tr>
<td>VI. FUTURE WORK</td>
<td>44</td>
</tr>
<tr>
<td>Water Chemistry</td>
<td>44</td>
</tr>
<tr>
<td>Experimental Apparatus</td>
<td>44</td>
</tr>
<tr>
<td>Experimental Procedure</td>
<td>45</td>
</tr>
<tr>
<td>BIBLIOGRAPHY</td>
<td>47</td>
</tr>
<tr>
<td>APPENDIX</td>
<td></td>
</tr>
<tr>
<td>A. SYSTEM COMPONENTS</td>
<td>51</td>
</tr>
<tr>
<td>B. DETAILED CALCULATIONS</td>
<td>75</td>
</tr>
<tr>
<td>C. APPARATUS PHOTOGRAPHS</td>
<td>119</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Recommended Tube Geometries</td>
<td>7</td>
</tr>
<tr>
<td>2. Manufactured Tube Geometries</td>
<td>8</td>
</tr>
<tr>
<td>3. Water Inlet Temperature Parametric Study</td>
<td>41</td>
</tr>
<tr>
<td>4. Refrigerant Saturation Temperature Parametric Study</td>
<td>41</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Fouling-rate Types</td>
<td>2</td>
</tr>
<tr>
<td>2. Schematic of a Cooling Tower (Meitz, 1999)</td>
<td>4</td>
</tr>
<tr>
<td>3. Axially-finned and Helically-finned Tubes</td>
<td>5</td>
</tr>
<tr>
<td>4. System Schematic</td>
<td>14</td>
</tr>
<tr>
<td>5. Test Section Diagram</td>
<td>15</td>
</tr>
<tr>
<td>6. Shell Union</td>
<td>17</td>
</tr>
<tr>
<td>7. Rupture Disc</td>
<td>21</td>
</tr>
<tr>
<td>8. LabVIEW Control Panel</td>
<td>28</td>
</tr>
<tr>
<td>9. Additional Center Legs</td>
<td>34</td>
</tr>
<tr>
<td>10. Corner Supports</td>
<td>34</td>
</tr>
<tr>
<td>11. Leaking Unions</td>
<td>35</td>
</tr>
<tr>
<td>12. Shell Modification</td>
<td>35</td>
</tr>
<tr>
<td>13. Detailed Test Section Diagram</td>
<td>36</td>
</tr>
<tr>
<td>14. Ring Heater Protection</td>
<td>37</td>
</tr>
</tbody>
</table>
NOMENCLATURE

A_i Internal surface area based on the nominal diameter (m^2)

B Constant

$c_{p, w}$ Specific heat of water at constant pressure ($J/kg\cdot K$)

ID Inside diameter (m)

OD Outside diameter (m)

$LMTD$ Log Mean Temperature Difference (K)

L Length of the tube (m)

\dot{m}_w Mass flow rate of water (kg/s)

\dot{Q} Heat transfer rate (W)

R_f Fouling resistance ($K\cdot m^2/W$)

R_f^* Asymptotic fouling resistance ($K\cdot m^2/W$)

t Time (s)

t_0 Initial time (s)

$T_{w, in}$ Water inlet temperature (K)

$T_{w, out}$ Water outlet temperature (K)

T_{ref} Temperature of the refrigerant (K)

U_c Overall heat transfer coefficient of clean tubes ($W/m^2\cdot K$)
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>U_f</td>
<td>Overall heat transfer coefficient of fouled tubes</td>
<td>W/m(^2)–K</td>
</tr>
<tr>
<td>U_i</td>
<td>Overall heat transfer coefficient based on the tube ID</td>
<td>W/m(^2)–K</td>
</tr>
</tbody>
</table>
I.A Fouling – A Brief Definition

Fouling is defined as the accumulation of deposits on heat transfer surfaces. These deposits represent an additional resistance layer, which deteriorates the heat exchanger’s performance. Engineers are concerned with fouling because it leads to increases in design, manufacturing, and operating costs.

In order to study the causes and effects of fouling, an understanding of how fouling takes place is important. There are six modes of fouling:

1. Scaling: Precipitation of material dissolved in a fluid due to a change in the fluid’s temperature.
2. Particulate fouling: Deposition of particles suspended in a fluid on a heat transfer surface.
3. Corrosion fouling: Accumulation of deposits that result from an electro-chemical reaction in which the heat transfer surface takes part.
4. Chemical reaction fouling: The deposition of particles that come from a reaction in which the fluid takes part.
5. Biological fouling: Growth of micro- or macro-organisms on heat transfer surfaces.
6. Freezing fouling: Solidification of a fluid on a heat transfer surface below the fluid freezing point.

Fouling is a time-dependent phenomenon and is usually preceded by a nucleation period. Once fouling starts, it can follow three functional forms. Figure 1 presents the three types of behavior of fouling resistance with respect to time. A linear fouling rate means that the fouling resistance grows at a constant rate. A falling rate means that the rate at which the fouling layer grows decreases with time. Finally, an asymptotic fouling rate is the case where the fouling resistance approaches a limiting value over time.

![Figure 1. Fouling-rate Types.](image)

I.B Introduction to Cooling Towers and Enhanced Tubes

Because of its natural abundance, non-harmful chemical composition, and suitable thermal properties, water is a frequently used fluid in heat exchangers. A cooling
tower is a common component of a building HVAC system. Figure 2 presents a schematic of a cooling tower. A cooling tower uses several steps (loops) to reject heat to the atmosphere. From a fouling perspective, the most critical loop is the “open recirculating loop” (see Figure 2) in which cooling tower water is exposed to the atmospheric air, and then circulated through a set of condenser tubes to be heated by a condensing refrigerant.

Cooling tower water is a complex solution that contains many dissolved constituents. In addition, cooling tower water picks up particles (dust, for example) while in contact with the atmospheric air. These solutes and particles are the primary cause of fouling in condenser tubes.

Because cooling tower water is treated with corrosion inhibitors and biocides, corrosion and biological fouling do not occur in the open recirculating loop. Moreover, no chemical reaction or freezing takes place in the condenser tube, so the only two fouling modes that are of concern in condenser tubes are particulate fouling and scaling (precipitation fouling).

Another factor that affects fouling in the condenser tubes is the internal geometry of the tube. In recent years, the use of enhanced tube geometries has become widespread. Enhanced geometries can drastically improve the heat transfer properties of the condenser tube. One of the most common enhancement geometry encountered today is the helical fin. Figure 3 shows an example of helically-finned and axially-finned tubes. Several terms are used in the nomenclature of enhanced heat transfer to describe a helically-finned tube. These terms are the helix angle, the fin height, and the number of starts. The helix angle is the angle that the edge of the fin forms with the axis of the tube.
Figure 2. Schematic of a Cooling Tower (Meitz, 1999).
The fin height is the distance measured from the internal wall of the tube to the top of the fin. The number of starts refers to how many fins one can count around the circumference of the test tube. For example, the axially-finned tube of Figure 3 has eight starts.

![Figure 3. Axially-finned and Helically-finned Tubes.](image)

The current practice to account for tube fouling during the design of heat exchangers is to use a fouling resistance in the calculations for the overall heat transfer coefficient. The problem is that the existing fouling resistance factors are based on smooth-tube data (Somerscales, 1990), since the factors were obtained before the enhanced tube geometries were used. Recent studies (Webb and Kim, 1989, Webb and Li, 2000) suggest that the enhancements in the tube geometry may actually promote fouling to the point where the additional thermal resistance caused by fouling overwhelms the enhancement-resulting gain in the tube’s heat transfer performance. The reason could be that enhancement geometry creates additional surface area where the deposits can attach. Deposits can also fill in the space between fins (see Figure 3).

I.C TRP-1205

TRP-1205 is a project sponsored by the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE). The full title of the project is
“Water-Side Fouling Inside Smooth and Augmented Copper Alloy Condenser Tubes in Cooling Tower Water Applications.” This project has three objectives:

1. Develop a water quality database for cooling tower water applications.
2. Correlate fouling data with water quality.
3. Experimentally determine the fouling of smooth and augmented tubes by directly using or simulating cooling tower water.

These objectives are to be accomplished in three phases:

Phase I: Perform a literature survey of the topic.

Phase II: Collect and analyze cooling tower water samples to compile a database.

Phase III: Perform a precipitation and particulate fouling experiment to determine the influence of tube geometry, water velocity, and water chemistry on fouling resistance.

Phases I and II were performed by Tubman (Tubman, 2002) during his graduate work at Mississippi State University. This thesis focuses on Phase III, and more specifically, on the design of the experimental apparatus needed for Phase III.

In order to fully satisfy the objectives of Phase III of the project, the experimental apparatus has to simulate, as closely as possible, the condenser of a cooling tower system chiller. To achieve this, a shell-and-tube (or double-pipe) heat exchanger must be used with water flowing in the inner tube and refrigerant condensing in the annulus. The simplest simulation of this arrangement is a double-pipe counterflow heat exchanger.
I.D Phase III of TRP-1205 – Objectives

The three objectives of Phase III are to experimentally determine the influence of
(1) tube geometry, (2) water velocity, and (3) water chemistry on the water-side fouling
of condenser tubes. Previous research (Li and Webb, 2000) demonstrated that the fin
geometry (fin height, helix angle, and number of fin starts) affects fouling of condenser
tubes. In order to study the influence of tube geometry on the fouling resistance (the first
objective of Phase III), tubes with different internal fin geometries have to be tested at
similar water-velocity and water-chemistry conditions. This can only be achieved if tubes
with different fin geometries are placed in parallel. With this in mind, nine tube
geometries to be tested were selected by the research team and approved by the Project
Monitoring Subcommittee. Table 1 delineates tube geometries of the nine tubes. Each
tube has the same outside fin geometry and outside diameter so that the outside heat
transfer coefficient is equal for each test tube. The length of each tube is 10 ft. For
installation purposes, six inches from both ends of the tube are unfinned.

<table>
<thead>
<tr>
<th>Tube #</th>
<th>OD (inch)</th>
<th>ID (inch)</th>
<th>Fin Height (inch)</th>
<th>Helix Angle (°)</th>
<th>Number Of Starts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.75</td>
<td>0.612</td>
<td>0.015</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>0.75</td>
<td>0.612</td>
<td>0.015</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>0.75</td>
<td>0.612</td>
<td>0.015</td>
<td>48</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>0.75</td>
<td>0.612</td>
<td>0.015</td>
<td>25</td>
<td>45</td>
</tr>
<tr>
<td>5</td>
<td>0.75</td>
<td>0.612</td>
<td>0.012</td>
<td>35</td>
<td>45</td>
</tr>
<tr>
<td>6</td>
<td>0.75</td>
<td>0.612</td>
<td>0.015</td>
<td>35</td>
<td>45</td>
</tr>
<tr>
<td>7</td>
<td>0.75</td>
<td>0.612</td>
<td>0.020</td>
<td>35</td>
<td>45</td>
</tr>
<tr>
<td>8</td>
<td>0.75</td>
<td>0.612</td>
<td>0.015</td>
<td>48</td>
<td>45</td>
</tr>
<tr>
<td>9</td>
<td>0.75</td>
<td>0.612</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 2 presents the dimensions of the tubes that were manufactured by Wieland-Werke AG for Phase III of TRP-1205.

<table>
<thead>
<tr>
<th>Tube #</th>
<th>OD (inch)</th>
<th>fin pitch (fins/inch)</th>
<th>fin height (inch)</th>
<th>Root Wall thickness (inch)</th>
<th>fin height (inch)</th>
<th>number of starts</th>
<th>helix angle (°)</th>
<th>ID (inch)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.741</td>
<td>40</td>
<td>0.0372</td>
<td>0.0254</td>
<td>0.0150</td>
<td>10</td>
<td>25</td>
<td>0.616</td>
</tr>
<tr>
<td>2</td>
<td>0.741</td>
<td>40</td>
<td>0.0364</td>
<td>0.0268</td>
<td>0.0148</td>
<td>30</td>
<td>25</td>
<td>0.615</td>
</tr>
<tr>
<td>3</td>
<td>0.743</td>
<td>40</td>
<td>0.0370</td>
<td>0.0268</td>
<td>0.0150</td>
<td>30</td>
<td>48</td>
<td>0.615</td>
</tr>
<tr>
<td>4</td>
<td>0.740</td>
<td>40</td>
<td>0.0364</td>
<td>0.0270</td>
<td>0.0150</td>
<td>45</td>
<td>25</td>
<td>0.613</td>
</tr>
<tr>
<td>5</td>
<td>0.741</td>
<td>40</td>
<td>0.0354</td>
<td>0.0280</td>
<td>0.0122</td>
<td>45</td>
<td>35</td>
<td>0.614</td>
</tr>
<tr>
<td>6</td>
<td>0.740</td>
<td>40</td>
<td>0.0366</td>
<td>0.0268</td>
<td>0.0150</td>
<td>45</td>
<td>35</td>
<td>0.613</td>
</tr>
<tr>
<td>7</td>
<td>0.741</td>
<td>40</td>
<td>0.0368</td>
<td>0.0268</td>
<td>0.0201</td>
<td>45</td>
<td>35</td>
<td>0.614</td>
</tr>
<tr>
<td>8</td>
<td>0.739</td>
<td>40</td>
<td>0.0364</td>
<td>0.0264</td>
<td>0.0150</td>
<td>45</td>
<td>48</td>
<td>0.613</td>
</tr>
<tr>
<td>9</td>
<td>0.742</td>
<td>40</td>
<td>0.0366</td>
<td>0.0264</td>
<td>0.0000</td>
<td>-</td>
<td>-</td>
<td>0.616</td>
</tr>
</tbody>
</table>

The second and third objectives of Phase III are to determine the influences of water velocity and water quality on the fouling characteristics of condenser tubes. To satisfy the second objective, the Project Monitoring Subcommittee required the research team to perform tests with water velocities at 2 ft/s, 5 ft/s, and 8 ft/s, with the stipulation that the water velocity in each test tube must remain constant during a single test. An increase in the water velocity might increase the removal rate of the fouling deposits because of increased wall shear stress. To study the effects of water quality on fouling resistance in condenser tubes (third objective), the water chemistry of the simulated cooling tower water was mandated to vary between low, average, and high fouling-potential conditions.

The test parameters described above require nine conditions (three water qualities at three different velocities) per tube. Thus, nine test runs are required. The concentrations of different constituents for the three water qualities to be tested have not
yet been determined, but will come from the conclusions, now being discussed with the Project Monitoring Subcommittee, of Phase II of the project.

I.E Measuring Fouling in Heat Exchangers

Consider how fouling is measured. Somerscales (1990) presents the history of fouling research from its first appearance in the literature in 1756 to the “International Conference on the Fouling of Heat Transfer Equipment” in 1979. He portrays the origins of the fouling factor as a means of accounting for the fouling resistance in the design of heat exchangers. In 1941, the Tubular Exchanger Manufacturers Association (TEMA) first published a table of fouling factors for different fluids in a multitude of applications (Chenoweth, 1990).

The fouling factor, R_f, is defined as

$$R_f = \frac{1}{U_f} - \frac{1}{U_c}$$ \hspace{1cm} (1)

where U_f and U_c are the overall heat transfer coefficients for the clean and fouled conditions, respectively. Equation (1), the data reduction equation of the experiment of Phase III, requires two overall heat transfer coefficients to be measured. Therefore, the apparatus is first run at clean conditions (clean tube, distilled water) to determine the clean-tube overall heat transfer coefficient. Solutes are then added to the water to induce fouling and to determine the fouled-tube overall heat transfer coefficient. A key point is to maintain the same operating conditions (water velocity, chemistry, and heat supplied to the refrigerant) while a foulant layer is being built up.
The rate of heat transfer by a heat exchanger is

\[\dot{Q} = U_i A_i \times \text{LMTD} \] \hspace{1cm} (2)

where \(A_i \) is the inside surface area, \(U_i \) is the overall heat transfer coefficient based on the inside surface area, and LMTD is the log mean temperature difference. For comparison purposes, the inside surface area is based on the nominal tube diameter \((A_i = \pi \times \text{ID} \times L) \).

The log mean temperature difference for a double-pipe counterflow heat exchanger with refrigerant at constant temperature (condensing) and water as the cold fluid is

\[\text{LMTD} = \frac{T_{w,\text{in}} - T_{w,\text{out}}}{\ln \left(\frac{T_{\text{ref}} - T_{w,\text{out}}}{T_{\text{ref}} - T_{w,\text{in}}} \right)} \] \hspace{1cm} (3)

From equation (2)

\[U_i = \frac{\dot{Q}}{A_i \times \text{LMTD}} \] \hspace{1cm} (4)

With the tube geometry and fluid temperatures known, the only missing information for finding \(U_i \) is the heat transfer rate, which can be found using an energy balance on the water flowing through the test tube:

\[\dot{Q} = \dot{m}_w c_{p,w} (T_{w,\text{out}} - T_{w,\text{in}}) \] \hspace{1cm} (5)

Thus, the fouling factor can be estimated with the following measurements:

1. Water inlet temperature
2. Water outlet temperature
3. Refrigerant temperature
4. Mass flow rate of the water
The experimentally-obtained fouling factor may possess an asymptotic behavior as illustrated in Figure 1. In such case, an exponential regression can be performed to the following equation:

\[R_f = R_f^* (1 - e^{-Bt}) \]
(6)

where \(t \) is the time, \(R_f^* \) is the asymptotic fouling resistance, and \(B \) is a constant.

Evaluating the time derivative of equation (6) at \(t = 0 \) yields the initial fouling rate

\[\frac{dR}{dt_o} = BR_f^* \]
(7)
CHAPTER II
EXPERIMENTAL APPARATUS DESIGN

II.A Preliminary Data

Each test will start with new tubes in clean condition. The alternative was to clean the tubes after each test with steel brushes. This alternative was rejected because there was no assurance that the cleaning would not affect the fouling rate of the cleaned tube.

Design requirements for the experimental facility include:

1. The apparatus must accommodate nine 10-foot-long tubes in parallel.
2. The design must be versatile so that tubes can be changed easily.
3. The water in the tubes must be able to flow at 2 ft/s, 5 ft/s, and 8 ft/s.
4. There must be an annulus side around each test tube with condensing refrigerant.

II.B Detailed Mechanical Design

II.B.1 System Overview

The design of the experimental apparatus started by utilizing the software AutoCAD 2000 to place the system components on a virtual lab floor. The system components are: nine test sections with refrigerant loops, water pump, water tank, draining valves, control panel, and water-cooling heat exchangers. The purpose of the
cooling heat exchangers is to reject the heat added to the test water in the condenser tubes. Because of space, the refrigerant loops are located underneath each test section.

Figure 4 illustrates a preliminary system schematic drawn to scale. The schematic shows nine test sections placed in parallel (numbers 1 through 9) between two manifolds. According to the flow direction, the two manifolds are defined as the inlet and outlet manifold. Each test section is surrounded by a shell where the refrigerant condenses. From the mixing tank, the test water goes through the water pump into the cooling heat exchangers, and then through the inlet manifold, the test sections, the outlet manifold, and the return line back into the tank.

The idea for the operation of the refrigerant loop is to use buoyancy forces to raise the refrigerant vapors into the annulus of the test section and to use gravity to drain the liquid out. Such a design requires no refrigerant pump or compressor. Figure 5 shows a preliminary schematic of the test section with the refrigerant loop. Refrigerant R-134a is stored in liquid form in a tank and is then evaporated with electric heaters so that vapors rise into the annulus. The vapor condenses on the outside of the test tube and flows back into the tank through a return pipe. The next sections describe each system component in detail.

II.B.2 Piping

Because the condenser tubes to be tested are made of copper, copper was selected as the material for all of the piping. The original design water velocity was less than 10 ft/s for each segment of the apparatus. However, this constrain resulted in large tube
Figure 4. System Schematic.
Figure 5. Test Section Diagram.
diameters, which meant higher cost and difficulties with soldering and installation. Based on cost and availability, a 1⅜-inch diameter tube was chosen to be the basis of the design.

The shell side of the test section has to be relatively large to ensure a uniform vapor distribution around a test tube and to accommodate the temperature and pressure sensors. For these reasons, a 3-inch diameter tube was selected for the shell. In the same manner, the inlet and outlet manifolds need to be large enough to be able to host the test sections. The manifolds were chosen to be 2¾-inch in diameter.

A 7/8-inch tube was selected to connect the test tube to the manifolds. This diameter matches the copper fittings that host the flow meter and the thermocouple. Reducing compression fittings are used to install a ¾-inch test tube in the test section.

The pipes used in the refrigerant loop were chosen to be 7/8-inch diameter for the vapor supply line and ½-inch diameter for the liquid return line. Using a larger size for the vapor line promotes the proper circulation of the refrigerant. To further assure vapor circulation, the vapor line connects to the side of the shell to prevent the condensates to enter the vapor line. The liquid return line connects to the bottom of the shell to guarantee proper draining. These connections guarantee a counterflow arrangement. Except for the 3-inch diameter shell, all of the copper tubing selected was type ACR (Air Conditioning and Refrigeration).

II.B.3 Test Section Shell Design

Since the experimental matrix (described in Section I.D) includes nine tests of nine tube geometries (a total of 81 tubes to be tested), the design of the test section shell has to be sufficiently flexible to allow frequent and rapid changing of the test tubes. For
this reason, the original plan was to use 3-inch ground-joint fittings (unions) on both sides of the test section shell, as shown in Figure 6. When a test tube would be changed, one end of the shell would be unsoldered from the tube, and the union at the other end would be opened. Due to leaks, this design was changed and unions were eliminated. A more detailed description of the new arrangement is given in Section IV.B.

Figure 6. Shell Union.

II.B.4 Valves

The apparatus has two drain valves. The first one is located upstream of the inlet manifold, and the second one on the return line. The drain valves are installed to obtain water samples during the test and to be able to drain the system after a test is performed.

The water-side of the test section contains one valve at the inlet and one at the outlet of a test tube, which allows for control of the water flow or isolation of a test
section from the system to change a test tube. The test tube water velocity of 2 ft/s, 5 ft/s, or 8 ft/s is achieved by manipulating either the pump discharge valve or both of the test section valves.

The design of each refrigerant loop includes refrigerant ball valves on the vapor supply and the liquid return lines. Closing these valves isolates the shell from the refrigerant tank during the replacement of a test tube.

II.B.5 Mixing Tank

The test water solution is prepared and monitored in the mixing tank. The size of the tank has to be greater than the total volume of the system so that a solution can be prepared in the tank first and then circulated through the system. The volume of the system was found by adding the volumes of the individual pipe segments. The diameter of each segment was known and the lengths were estimated from Figure 4. The total volume of the system was estimated to be 18 gallons.

Diverse Plastic Tanks, Inc recommended a 65-gallon conical bottom tank with a steel stand. The tank has a conical bottom to prevent possible settlement of particles, which could affect the fouling potential of the test water. A drawing of the tank is included in Appendix A.

II.B.6 Water-cooling Heat Exchangers

The purpose of the water-cooling heat exchangers is to remove the heat added to the test water by the refrigerant condensing in the test sections. The first idea was to connect the hot test water to a 10-ton condenser that was available from the Two-Phase
Flow Lab (Patterson 100-E) and to run city water through the condenser’s cold line. The maximum water flow-rate rating of the 10-ton condenser is 32 gal/min. The maximum volumetric flow rate of the test water was calculated (see Pressure Drop Calculations in Appendix B) to be 66 gal/min, which corresponds to a water velocity of 8 ft/s in the test tubes. A second 10-ton condenser was purchased and connected in parallel to reduce the water flow rate to an acceptable level of 33 gal/min through each condenser. Both 10-ton condensers are models S-10-I from Edwards Engineering Corp. Refer to Appendix A for a specification sheet of the S-10-I.

II.B.7 Pressure Drop and Pump Selection

The pressure drop and the flow rate determined the size of the water pump needed for the experiment. Appendix B presents detailed calculations of the pressure drop through the system. Pressure drop through each test section was calculated by Tubman (2002) and was based on experimentally-determined friction characteristics equations for internal helical-rib roughness (Webb, Narayanamurthy, and Thors, 2000). Calculations were made for all three water velocities. Loss coefficients for the valves were taken at half-closed condition for more conservative calculations. Pressure drop through the water-loop heat exchangers was modeled as flow through parallel pipes with the appropriate loss coefficients for bent tubing and was compared with the manufacturer’s specifications (see Appendix A). The pressure drop values agreed closely.

The head at the highest test water velocity (8 ft/s in test tubes, 66 gal/min total volumetric flow rate) was determined to be 218.5 ft. Tencarva Machinery Co. was contacted to get a quote for a pump that meets the calculated head and flow rate
specifications. Tencarva suggested using the Goulds Pumps Model 3756 1X2-7. This is a close-coupled, bronze-fitted pump powered by a 3-phase, 2-pole, 3500-RPM, 10-hp motor. The manufacturer’s specification sheet and pump curves are included in Appendix A.

II.B.7.a Vibration Isolators

Vibration isolators are rubber dampers that are installed under the pump to limit the noise and vibration of the piping and pump assembly. The design includes four Karman Rubber type-A cylindrical isolators 1 9/16-inch-diameter and 1-inch high. A catalog page showing the vibration isolators is included in Appendix A.

II.B.8 Refrigerant Tanks

The selection of the refrigerant tanks was problematic because none of the ones available on the market met the project’s requirements. As described in Section II.B.1, the refrigerant tanks hold R-134a at boiling conditions. Vapors rise into the test section by means of buoyancy and return in liquid form due to gravity. In order to achieve this circulation, the tank has to have an outlet at the top and an inlet at the bottom, and electric ring heaters placed above the inlet.

Suction accumulators were first examined. In a regular air conditioning system, the suction accumulator has an internal U-tube to help separate vapors from liquid before the refrigerant is fed to the compressor. Several manufacturers were contacted to see if the design could be modified by removing the internal U-tube. Refrigeration Research, Inc., bid a modified steel accumulator rated for a burst pressure of 450 psi. Refrigeration
Research also agreed to install copper stubs on the steel nipples in order to facilitate the soldering of the test section copper piping. Appendix A includes a detailed drawing of the modified suction accumulator (refrigerant tank).

II.B.9 Rupture Discs

The rupture discs were incorporated into the design for mechanical safety. The discs are installed in the refrigerant tanks. The function of the rupture discs is to burst in case the pressure in the tank exceeds 200 psig. Figure 7 is a drawing of a rupture disc. The discs are made of graphite and are placed between two rubber gaskets and ANSI steel flanges. The flanges are secured with four bolts tightened to 10 ft*lb of torque. The rupture discs were special-ordered from Graphilor Carbone of America. A specification sheet for the rupture discs is included in Appendix A.

![Figure 7. Rupture Disc.](image)

II.B.10 Refrigerant Heaters

The purpose of the refrigerant heaters was to supply the heat needed to evaporate the refrigerant. The heaters are sized according to a calculation performed on the water-
side of the test section (see Calculations of Refrigerant Heat Loads in Appendix B). The increase of the water temperature across the test section was assumed to be at least 3°F in order for the data to be relevant. Using the first law of thermodynamics and assuming no heat losses to the surroundings, 3250 W of power need to be supplied to the refrigerant tank to increase the temperature of the test water (flowing at 8 ft/s) by 3°F.

II.B.10.a Ring Heaters

The design of the ring heaters has to be such that the heaters can be installed around a refrigerant tank. Two smaller heaters, instead of one large one, were selected in order to be able to supply less heat for the tests at lower water velocities. Two 2250-W ring heaters made by Omegalux were chosen as the best alternative. They are 8½-inch diameter, 2½-inch thick, and can be powered by a 240- or 480-V AC. A ring heater specification sheet is provided in Appendix A.

II.B.10.b Tape Heaters

A wrap-around tape heater is installed on each shell-side inlet tube to provide the energy required to feed superheated refrigerant into the test section. The selected tape heater is a 1-inch wide, 6-ft long strip connected to a 240-V outlet through a percentage controller, having a maximum output power of 432 W. The tape heater was also purchased from Omegalux. A specification sheet of the tape heater is attached in Appendix A.
II.B.11 Insulation

Several parts of the apparatus are insulated for safety reasons and in order to limit losses of heat assuring more accurate temperature readings. Half-inch thick elastomeric pipe insulation was purchased from Manhattan Supply Co. for the inlet manifold, and the test section water tubing and shell. Air duct insulation was purchased for the refrigerant tanks and heaters. Appendix A includes pipe insulation specifications.

II.C Data Acquisition System

II.C.1 Transducers

As described in Section I.E, the following variables have to be measured during the experiment: test tube water inlet temperature, water outlet temperature, water flow rate, refrigerant temperature, and refrigerant pressure. The following subsections describe in more detail each transducer used in the apparatus.

II.C.1.a Thermocouples

Because of its simplicity, the thermocouple was chosen to measure the water and refrigerant temperatures. Instead of using nine separate thermocouples to measure the water temperature at the inlet of every test section, one thermocouple measures the temperature of the water inside the water inlet manifold. The temperature of the water in the inlet manifold is taken as the water inlet temperature for every test section, consequently reducing the number of thermocouples needed. From the Omega catalog, the Type-T thermocouple was determined to be the best-suited type for the experiment. A Type-T thermocouple with a 3-inch long, ¼-inch NPT pipe plug probe and 30 feet of
thermocouple wire was special-ordered from Omega. The thermocouple specification sheet is provided in Appendix A.

II.C.1.b Flow Meters

To measure the water flow rates, the FP-5300 paddle wheel flow sensor from Omega Engineering was chosen. This flow meter has a velocity range of 1 to 20 ft/s and works on a simple principle. Four permanent magnets, mounted in the rotor blades, spin past a coil in the sensor body. As the fluid flow causes the rotor to move, a sine-wave signal is produced, directly proportional in amplitude and frequency to the flow rate. An FP-5300 flow sensor specification sheet is attached in Appendix A. In addition to the flow meter, a special copper installation fitting, namely the FP-5307CU, was purchased. A catalog page with the FP-5307CU fitting can be found in Appendix A.

II.C.1.c Pressure Transducers

For more accurate pressure readings, an absolute pressure transducer was initially considered. The highest range available on an absolute pressure transducer was 300 psia. A higher range was desired so that the pressure sensor could be used in the future for other projects. Therefore, a 500-psig model with a ¼-inch NPT connection was purchased from Omega Engineering. Appendix A contains a specification sheet for the PX302-500GV pressure transducer.
II.C.2 Transducer Calibration

The flow meter was calibrated by placing it in the same assembly as the one used in the real apparatus and connecting the assembly to a water hose. The flow meter leads were connected to an oscilloscope. The water coming out of the flow meter assembly was captured in a tub, which was placed on a balance. The time it took the tub to fill and the weight of the water in the tub were recorded. At the same time, the frequency of the output signal was recorded. The resulting calibration curve of the mass flow rate versus frequency is shown in Appendix B.

The pressure transducer was calibrated with a calibrating device from Amthor Testing Instrument Co., Inc. This device uses an oil chamber connected to a cylinder with a 1-square-inch piston. The pressure of the oil in the chamber is varied by placing weights on the piston. The pressure transducer to be calibrated is connected to the calibrating device to read the pressure of the oil. The calibration of the pressure transducer was performed by adding weights on the piston in increments of 5 lbs and recording the output voltage of the transducer to obtain a calibration curve attached in Appendix B.

The thermocouples were not calibrated since accurate calibration plots for a Type-T thermocouple are commonly available.

II.C.3 SCXI Modular System

SCXI stands for Signal Conditioning eXtensions for Instrumentation. It is a signal conditioning system marketed by National Instruments of Austin, Texas. Any SCXI data acquisition system is composed of the following items:
1. **Chassis.** The chassis provides power to the SCXI modules, and handles all signal routing between the SCXI system and the DAQ card.

2. **Modules.** Modules connect to the chassis, and condition analog and digital signals.

3. **Terminal Blocks.** Terminal blocks connect the I/O signals (e.g. transducers) to SCXI modules.

4. **Cable Assemblies.** Cable assemblies connect the SCXI chassis to the digitizer (DAQ card). For a single-chassis system, only one cable is needed.

5. **Measurement/Control Device.** This device acquires conditioned signals from the SCXI system and controls the SCXI system. This device is typically a DAQ card.

6. **Optional Accessories.** These are items such as batteries for portable applications and rack-mounting kits.

The SCXI system used in Phase III is composed of an SCXI-1000 chassis, an SCXI-1102C module with an SCXI-1303 terminal block, an SCXI-1100 module with an SCXI-1303 terminal block, and an SCXI-1163R module with an SCXI-1326 terminal block. The SCXI-1102C module handles temperature readings, the SCXI-1100 handles pressure and flow-rate readings, and the SCXI-1163R is a safety switch that turns the system off in case prescribed conditions occur (see Section II.D). The SCXI chassis is connected to a DELL Pentium 4 personal computer and is controlled by a National Instruments DAQCard-AI-16XE-50 data acquisition card. Appendix A includes detailed information about the SCXI chassis and modules.
II.C.4 Data Acquisition Program

The program that controls the SCXI system and records transducer measurements is written in LabVIEW 6.1 from National Instruments. The purpose of this program is to determine and display water temperatures and flow rates, refrigerant pressures and temperatures, overall heat-transfer coefficients and fouling resistances of the test tubes. Current readings, plots, and user-input information are viewed and modified through a control panel, shown in Figure 8. The control panel displays numeric values of the current measurements and graphs past readings. The graphs are helpful in determining the time behavior of each variable. The following variables must be specified to start the program: tube dimensions, number of past measurements to display on the plots, clean-tube overall heat-transfer coefficients, time between consecutive scans, the units system, and whether or not each tube is connected. Except for the number of past measurements to display on the plots and the units system, every input variable can be changed while the program is running.

Every time a reading is taken, 600 measurements are acquired from each transducer at a rate of 300 scans per second. The measurements are then averaged to give a single value for a single-time. Since flow meters output an AC signal, the program counts the number of peaks and valleys for each flow meter, and divides that number by two to obtain the number of cycles. Then, this number is divided by two seconds (the time it takes to scan a single flow meter channel) to obtain the signal frequency. The method in which the frequency of the signal is determined contributes to the uncertainty of the mass flow rate (see uncertainty analysis calculations in Appendix B).
Figure 8. LabVIEW Control Panel.
The readings are saved to a spreadsheet file every ten minutes. The user can copy the file while the program is running and look at the data recorded from the beginning of the test up to the point when the file was copied. These data can be further processed or plotted within the spreadsheet.

II.D Safety

Because of hot tanks containing pressurized refrigerant, several safety precautions are incorporated in the design. The safeties consist of a relay (controlled by the LabVIEW program) capable of shutting the whole system down, one rupture disc in each tank, and a mechanical stop button placed on the electrical control panel. The relay will turn everything off if one of the following conditions below is encountered:

1. Refrigerant temperature reaches or exceeds 120 °F in any of the test sections.
2. Refrigerant pressure reaches or exceeds 186 psia in any of the test sections.
3. Water velocity drops below 0.7 ft/s in any of the connected test tubes.
4. The user-interface stop button is pushed.

These safety limits were thought to be adequate because of the expected refrigerant operating conditions (a boiling temperature of approximately 100°F). The 186 psia safety condition is the boiling pressure of R-134a at 120°F. The water velocity constraint is set to prevent any of the tubes from becoming completely clogged due to excessive fouling or in case there is a large leak and the pump starts running dry. If a test section is disconnected from the system while the test is running, a “tube connected?” toggle switch
is turned off in the control panel so that the LabVIEW program does not apply the water velocity condition to the unused test section. Nevertheless, the refrigerant and pressure safety conditions apply even to the disconnected test section. All of the LabVIEW safety constraints can be modified before each test.
CHAPTER III
EXPERIMENTAL APPARATUS ASSEMBLY

III.A Supporting Structure

The construction of the experimental apparatus began with the assembly of the supporting structure (shown in Appendix C). The structure was made out of aluminum beams that could be bolted to each other at any location. Using bolted aluminum beams made the structure light, flexible, and easy to assemble.

III.B Apparatus Assembly

The assembly of the piping began by laying out the test sections, the inlet, and outlet manifolds on the floor next to a measuring tape. This allowed for the piping to be cut into correct lengths so the pieces would fit together precisely. The pieces were joined together with high-melting-temperature silver solder. To facilitate the changing of the test tubes, low-melting-temperature soft solder was used to install the test tube in the annulus. Appendix C contains several photographs of the apparatus assembly process, including photographs of the test section construction and an assembled outlet manifold.

Once the test sections and manifolds were assembled, they were placed on the supporting structure so that the transducers could be installed. The test sections were then connected to the water manifolds. Next, the inlet and outlet manifolds were connected to
the water supply and return lines, respectively. Subsequently, the entire system was connected to the refrigerant tanks, the water pump, the mixing tank, and the water-cooling heat exchangers. Finally, the rupture discs and the ring and tape heaters were placed on the refrigerant tanks. Appendix C shows photographs of the progressive assembly of the system (installed test sections, mixing tank and pump, water-loop heat exchangers, rupture discs, and completed experimental apparatus). The last step was to insulate the inlet manifold, the test sections, and the refrigerant tanks.

III.C Power

In order to overcome the electric limitations of the existing electrical wiring, one 480-V, 100-A service was added to the laboratory. This power service feeds all system components via appropriate transformers and a control panel. The control panel holds all of the fuses and switches. The switches include a main ON/OFF switch, a pump ON/OFF switch, a stop button, LabVIEW-controlled safety relays, and an ON/OFF switch for every band heater (18 total). However, as a safety precaution, the ring heaters cannot be turned on unless the pump is running. Appendix C contains a photograph of the control panel.
IV. A Supporting Structure

During the construction of the experimental apparatus, the previously-assembled supporting structure was under too much stress and was not stable with the center beams bowing. Aluminum beams were used to reinforce the structure. As shown in Figure 9, two additional legs were installed in the center of the assembly. Furthermore, as pictured in Figure 10, extra beams were added in the corners. The reinforcements made the supporting structure stiffer and stronger.

IV. B Shell Design Modification

After the test sections were assembled, they were charged with pressurized air in order to find any leaks. To detect leaks, the shells were sprayed with soapy water since air leaks would create bubbles. Nearly all of the shells leaked around the threaded ground-joint fittings (shown in Figure 6). Several sealants were applied to try to stop the leaks but nothing worked. The design had to be modified to reduce or eliminate the large threaded areas.

The ground-joint fittings were removed and smaller concentric reducers were installed and sealed with soft solder to make it easier to change the test tubes. Figure 11
Figure 9. Additional Center Legs.

Figure 10. Corner Supports.
shows a leaking union, and Figure 12 pictures the new design with a silver-soldered small concentric reducer. This shell modification solved the leak problem. Figure 13 is a detailed schematic of the new test section.

Figure 11. Leaking Unions.

Figure 12. Shell Modification.
Figure 13. Detailed Test Section Diagram.
IV.C Insulation

Regular duct insulation was installed around the tank and the ring heaters. The purpose of the insulation around the ring heaters was to prevent heat losses and to protect personnel from the high voltage heater wiring. When both heaters were turned on, the insulation started smoking due to excessive temperature. The purchase of high-temperature insulation was investigated but the price was too high. Thus, the insulation was removed from the tanks and fiberglass protections were installed around the wiring of each tank heater (as shown in Figure 14).

Figure 14. Ring Heater Protection.
IV.D Mixing Tank

When the pump was turned on, the water in the mixing tank was very agitated and many air bubbles were present. These bubbles could be dangerous if they traveled down to the pump (cavitation). In order to decrease the turbulence of the water in the mixing tank, a system of baffles that can be installed and removed from that tank within minutes was constructed. The baffles were made out of an old PVC pipe. The baffles have not been tested.

IV.E Data Acquisition System

Once the leaks in the system were fixed, the data acquisition system was tested. The first problem encountered was the signal noise associated with the flow meters. Because of their design (refer to Section II.C.1.b), the flow meters had very low input impedance. This caused a current leak within the module from one flow meter to the next one in the scanning sequence. An increase in the inter-channel delay, to let the noise die out before scanning the next flow meter, could not be done. Instead, each flow meter channel in the SCXI-1100 module was isolated with one empty channel. The empty channels were set to read zero Volts by placing a jumper wire across their positive and negative connectors. With this set up in place, only odd channels were read by the data acquisition program and the noise was eliminated.

Another problem encountered was the memory used by LabVIEW. When left running, the data acquisition program would stop after 20 hours of operation and list an “out of memory” error. After many hours of research, some commands in LabVIEW were found to cause memory leaks. The subroutine that was causing the memory leak
was the “delete from array” command, which was used to clear the graphs’ history. To solve the problem, the “delete from array” command was removed and the program was set to use “charts” instead of “graphs.” Charts clear their history automatically so the memory leak problem did not occur.

IV.F Water-loop Heat Exchangers

A test run of the apparatus was performed. Each refrigerant tank was charged with 20 lbs of R134a. One band heater (2250 W) was turned on around each refrigerant tank. The city water flowing through the cold lines of the two water-cooling heat exchangers was turned to full flow. The water velocity in the test sections varied between 6 ft/s and 7 ft/s. Once steady-state conditions were obtained, the refrigerant saturation temperature reached about 105°F, and the average test water inlet temperature was about 98.5°F. The average water outlet temperature was about 100°F, which means that temperature rise across each test section was only 1.5°F. To solve this problem, the inlet temperature of the test water can be lowered by running chilled water in the cold lines of the water-cooling heat exchangers. This idea is currently being investigated by the research team.

IV.G Uncertainty Analysis

The data obtained from the test run allowed the research team to get an idea of the uncertainty associated with the measured fouling resistance. Before performing an uncertainty analysis of the data reduction equation, the uncertainty of the mass flow rate calibration curve had to be obtained. Whenever dealing with calibration plots, the uncertainty of the Y-value depends on the position on the X-axis (Coleman and Steele,
In the case of the mass flow-rate calibration curve, X is the frequency measured and Y is the mass flow rate obtained from the calibration curve equation. The uncertainty is the smallest in the middle of the plot and highest at the ends of the plot.

Appendix B presents a detailed Mathcad worksheet used to obtain the uncertainty of the mass flow rate calibration plot. The uncertainty was calculated for the range of frequencies obtained in the calibration process. The mass flow-rate uncertainty values were plotted and a quadratic least squares regression was performed to obtain an equation for the uncertainty of the mass flow rate.

Once the uncertainty of the mass flow rate was known, the next step was to use it in the fouling resistance uncertainty propagation equation. The detailed calculations are shown in the Mathcad worksheet in Appendix B. For the measurements obtained during the test run, the calculated uncertainty is 48% of the resulting fouling resistance.

The relative uncertainty in the fouling resistance obtained from the test run is high. At this point of the project, the uncertainty can be reduced by tuning the log mean temperature difference. The first option is to vary the test sections water inlet temperature, which can be achieved by manipulating the flow rate through the cold lines of the water-cooling heat exchangers. The second option is to vary the saturation temperature of the refrigerant. This alternative can be achieved by switching on both ring heaters around each refrigerant tank, or by manipulating the percentage controller of the tape heater. Table 3 shows the influence of the variation of the water inlet temperature on the relative uncertainty in the fouling resistance. Table 4 shows the influence of the variation of the refrigerant saturation temperature on the relative uncertainty in the fouling resistance. Both tables were generated by taking the measurements obtained
during the test run and varying only the inlet water temperature for Table 3, and only the refrigerant saturation temperature for Table 4. The values of the remaining variables were held constant. Both tables show that there is a point of minimum uncertainty in the fouling factor.

Table 3. Water Inlet Temperature Parametric Study.

<table>
<thead>
<tr>
<th>Water Inlet Temperature Variation (K)</th>
<th>Clean Tube LMTD (K)</th>
<th>Fouled Tube LMTD (K)</th>
<th>Relative Uncertainty in Rf (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>+0.5</td>
<td>2.553</td>
<td>1.897</td>
<td>58.5</td>
</tr>
<tr>
<td>0</td>
<td>2.763</td>
<td>2.099</td>
<td>48.7</td>
</tr>
<tr>
<td>-0.5</td>
<td>2.965</td>
<td>2.292</td>
<td>41.8</td>
</tr>
<tr>
<td>-1</td>
<td>3.160</td>
<td>2.477</td>
<td>38.0</td>
</tr>
<tr>
<td>-1.5</td>
<td>3.349</td>
<td>2.655</td>
<td>36.7</td>
</tr>
<tr>
<td>-2</td>
<td>3.533</td>
<td>2.828</td>
<td>36.8</td>
</tr>
<tr>
<td>-2.5</td>
<td>3.712</td>
<td>2.996</td>
<td>37.8</td>
</tr>
<tr>
<td>-3</td>
<td>3.888</td>
<td>3.161</td>
<td>39.5</td>
</tr>
<tr>
<td>-3.5</td>
<td>4.060</td>
<td>3.322</td>
<td>41.4</td>
</tr>
<tr>
<td>-4</td>
<td>4.228</td>
<td>3.479</td>
<td>43.6</td>
</tr>
<tr>
<td>-4.5</td>
<td>4.394</td>
<td>3.634</td>
<td>45.8</td>
</tr>
<tr>
<td>-5</td>
<td>4.557</td>
<td>3.787</td>
<td>48.1</td>
</tr>
</tbody>
</table>

Table 4. Refrigerant Saturation Temperature Parametric Study.

<table>
<thead>
<tr>
<th>Refrigerant Saturation-Temperature Variation (K)</th>
<th>Clean Tube LMTD (K)</th>
<th>Fouled Tube LMTD (K)</th>
<th>Relative Uncertainty in Rf (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.5</td>
<td>2.244</td>
<td>1.566</td>
<td>49.9</td>
</tr>
<tr>
<td>0</td>
<td>2.763</td>
<td>2.099</td>
<td>48.7</td>
</tr>
<tr>
<td>+0.5</td>
<td>3.277</td>
<td>2.619</td>
<td>45.9</td>
</tr>
<tr>
<td>+1</td>
<td>3.787</td>
<td>3.132</td>
<td>42.3</td>
</tr>
<tr>
<td>+1.5</td>
<td>4.294</td>
<td>3.642</td>
<td>38.2</td>
</tr>
<tr>
<td>+2</td>
<td>4.800</td>
<td>4.149</td>
<td>34.2</td>
</tr>
<tr>
<td>+2.5</td>
<td>5.305</td>
<td>4.654</td>
<td>30.9</td>
</tr>
<tr>
<td>+3</td>
<td>5.809</td>
<td>5.159</td>
<td>29.3</td>
</tr>
<tr>
<td>+3.5</td>
<td>6.312</td>
<td>5.662</td>
<td>30.9</td>
</tr>
<tr>
<td>+4</td>
<td>6.815</td>
<td>6.165</td>
<td>36.7</td>
</tr>
<tr>
<td>+4.5</td>
<td>7.317</td>
<td>6.668</td>
<td>46.8</td>
</tr>
<tr>
<td>+5</td>
<td>7.819</td>
<td>7.170</td>
<td>61.2</td>
</tr>
</tbody>
</table>
CHAPTER V

RECOMMENDATIONS

Several conclusions can be drawn from the design, assembly, and modifications of the experimental apparatus. The following is a list of ten recommendations for building a similar apparatus.

1. Use a large mixing tank.
2. Have the necessary equipment to guarantee adequate cooling of the test water.
3. Limit the use of threaded surfaces to avoid water or refrigerant leaks.
4. Be conservative in the evaluation of the water pressure drop through the apparatus.
5. Make sure the supporting structure is sturdy.
6. Check in advance the power capabilities of the laboratory.
7. Be very familiar with LabVIEW, and run the data acquisition program on a stable computer system.
8. Ensure the safety of the laboratory and its users by implementing electronic and mechanical safety systems.
9. Perform a general uncertainty analysis prior to the experiment to identify the variables that contribute the most to the overall uncertainty.
in the fouling factor. Use the results to select optimal transducers and measurement methods.

10. Avoid using low impedance transducers that output an AC signal.
CHAPTER VI
FUTURE WORK

VI.A Water Chemistry

Before Phase III of the project can begin, the Project Monitoring Subcommittee must approve the three chemistry conditions of the test water (low, average, and high fouling potential). This decision will be based on the results of Phase II (Tubman, 2002) as well as additional information found in the literature (Li et al., 2001). The test water preparation procedure has already been devised with the help of the Mississippi State Chemical Laboratory. Only the constituents and concentrations have to be specified to start testing.

VI.B Experimental Apparatus

The immediate task is to test the influence of the tank baffles on the formation of air bubbles in the test water. The next possible undertaking is to install the chilled water line in the laboratory and to connect it to the cold line of the water-loop heat exchangers. Finally, if time and money allow, high temperature insulation needs to be installed around the refrigerant tanks. These tasks and modifications are not necessary to perform any of the tests.
VI.C Experimental Procedure

An experimental procedure, already devised, will be discussed with the Project Monitoring Subcommittee. The mixing tank and the apparatus will be filled with distilled water. The pump will be turned on, and the valves will be adjusted so that the water velocity in each test tube reaches the desired value. The ring heaters will be turned on around each tank, and the tape heaters will be adjusted to give the required superheat. Once steady-state conditions are reached, the clean-condition overall heat-transfer coefficient will be obtained for each test tube.

On the same day, the employees of the Mississippi State Chemical Laboratory will add the foulants to the distilled water. Appropriate amounts of the reagents will be dissolved in five gallons of distilled water for dilution to the desired values in 75 gallons (approximate volume of the system) upon introduction into the system. Once the spiking solution is added and the container holding the solution rinsed three times, the system will be allowed to run several minutes before taking a sample for pH measurement. Concentrated HCl will be added until the pH reaches approximately 9 by checking with pH paper. At that point, a water sample will be taken as a baseline \(t = 0 \) to be used for comparisons of chemical quality over time. The test water will run continuously during the addition of the chemicals and the entire course of the experiment. Water samples will be taken every week to ensure a constant water quality.

Once the tests are performed and the data are available, a least squares fit to the fouling resistance factors will be performed. The acquired data will also be used in attempt to obtain a model predicting the fouling resistance in helically-finned tubes. If
possible, the relationship between long-term fouling data and short-term results will also be investigated.

APPENDIX A

SYSTEM COMPONENTS
A1. Mixing Tank
A2. S-10-I Condenser Specification Sheet
A3. Model 3656 Water Pump Specification Sheets
A4. Model 3656 Water Pump Curves
A5. Cylindrical Vibration Isolator
A6. Modified Suction Accumulator (Refrigerant Tank)
A7. Rupture Disc Data Sheet
A8. Ring Heater Specification Sheet
A9. Tape Heater Specification Sheet
A10. Pipe Insulation Data Sheet
A11. Thermocouple Data Sheet
A12. Flow Meter Specification Sheets
A13. Flow Meter Installation Fitting
A14. Pressure Transducer Specification Sheet
A15. SCXI-1000 Chassis Data Sheet
A16. SCXI-1100 and SCXI-1102C Modules Specification Sheet
A17. SCXI-1100 and SCXI-1102C Modules Schematics
A18. SCXI-1163R Module Specification Sheets
A1. Mixing Tank

ALL FITTINGS ARE INSTALLED THEN REMOVED AND REPACKAGED IN ORDER TO ELIMINATE DAMAGE IN SHIPMENT

65 GALLON PRE-MIX TANK

(all dimensions in inches)

PART #: TANK: 150--

REF#: 0000 04/17/02
WATER COOLED CONDENSERS

20°C Temperature Difference

<table>
<thead>
<tr>
<th>MODEL</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>MAX GPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-1-I</td>
<td>7.6</td>
<td>0.3</td>
<td>11.4</td>
<td>0.9</td>
<td>14.5</td>
<td>2.0</td>
<td>18.1</td>
<td>3.3</td>
<td>20.1</td>
<td>5.0</td>
</tr>
<tr>
<td>S-1.5-I</td>
<td>8.9</td>
<td>0.4</td>
<td>14.0</td>
<td>1.2</td>
<td>17.8</td>
<td>2.6</td>
<td>22.4</td>
<td>4.5</td>
<td>25.1</td>
<td>6.7</td>
</tr>
<tr>
<td>S-2-I</td>
<td>14.1</td>
<td>0.4</td>
<td>17.9</td>
<td>0.8</td>
<td>21.0</td>
<td>1.4</td>
<td>23.9</td>
<td>2.1</td>
<td>26.5</td>
<td>3.0</td>
</tr>
<tr>
<td>S-2.5-I</td>
<td>16.2</td>
<td>0.5</td>
<td>20.9</td>
<td>1.1</td>
<td>24.7</td>
<td>1.6</td>
<td>28.2</td>
<td>2.7</td>
<td>31.5</td>
<td>3.8</td>
</tr>
<tr>
<td>S-3-I</td>
<td>20.7</td>
<td>0.4</td>
<td>24.5</td>
<td>0.7</td>
<td>27.8</td>
<td>1.0</td>
<td>30.5</td>
<td>1.5</td>
<td>35.9</td>
<td>2.5</td>
</tr>
<tr>
<td>S-3.5-I</td>
<td>23.6</td>
<td>0.5</td>
<td>28.2</td>
<td>0.9</td>
<td>32.2</td>
<td>1.3</td>
<td>35.7</td>
<td>1.8</td>
<td>42.0</td>
<td>3.1</td>
</tr>
<tr>
<td>S-4-I</td>
<td>42.0</td>
<td>1.4</td>
<td>47.2</td>
<td>2.1</td>
<td>52.3</td>
<td>3.0</td>
<td>60.1</td>
<td>4.0</td>
<td>64.2</td>
<td>5.0</td>
</tr>
<tr>
<td>S-5-I</td>
<td>48.8</td>
<td>1.7</td>
<td>55.3</td>
<td>2.6</td>
<td>61.4</td>
<td>3.7</td>
<td>70.6</td>
<td>4.9</td>
<td>75.8</td>
<td>6.3</td>
</tr>
<tr>
<td>S-6-I</td>
<td>49.0</td>
<td>0.9</td>
<td>55.6</td>
<td>1.2</td>
<td>61.0</td>
<td>1.7</td>
<td>66.6</td>
<td>2.1</td>
<td>71.8</td>
<td>2.7</td>
</tr>
<tr>
<td>S-7-I</td>
<td>56.4</td>
<td>1.1</td>
<td>64.5</td>
<td>1.5</td>
<td>71.4</td>
<td>2.0</td>
<td>77.8</td>
<td>2.6</td>
<td>84.4</td>
<td>3.3</td>
</tr>
<tr>
<td>S-8-I</td>
<td>78.4</td>
<td>1.3</td>
<td>84.0</td>
<td>1.6</td>
<td>94.4</td>
<td>2.3</td>
<td>104.6</td>
<td>3.1</td>
<td>120.2</td>
<td>4.1</td>
</tr>
<tr>
<td>S-10-I</td>
<td>90.8</td>
<td>1.6</td>
<td>97.6</td>
<td>1.9</td>
<td>110.6</td>
<td>2.8</td>
<td>122.8</td>
<td>3.9</td>
<td>141.6</td>
<td>5.1</td>
</tr>
</tbody>
</table>

PD = Water pressure drop, lbs/sq inch.

25°C Temperature Difference

<table>
<thead>
<tr>
<th>MODEL</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>MAX GPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-1-I</td>
<td>9.6</td>
<td>0.3</td>
<td>14.7</td>
<td>0.9</td>
<td>18.5</td>
<td>2.0</td>
<td>22.2</td>
<td>3.3</td>
<td>25.8</td>
<td>5.0</td>
</tr>
<tr>
<td>S-1.5-I</td>
<td>11.3</td>
<td>0.4</td>
<td>17.8</td>
<td>1.2</td>
<td>22.8</td>
<td>2.6</td>
<td>28.7</td>
<td>4.5</td>
<td>32.2</td>
<td>6.7</td>
</tr>
<tr>
<td>S-2-I</td>
<td>17.9</td>
<td>0.4</td>
<td>22.8</td>
<td>0.8</td>
<td>26.9</td>
<td>1.4</td>
<td>30.5</td>
<td>2.1</td>
<td>34.0</td>
<td>3.0</td>
</tr>
<tr>
<td>S-2.5-I</td>
<td>20.6</td>
<td>0.5</td>
<td>26.6</td>
<td>1.1</td>
<td>31.6</td>
<td>1.8</td>
<td>36.1</td>
<td>2.7</td>
<td>40.4</td>
<td>3.8</td>
</tr>
<tr>
<td>S-3-I</td>
<td>26.4</td>
<td>0.4</td>
<td>31.2</td>
<td>0.7</td>
<td>35.5</td>
<td>1.0</td>
<td>39.2</td>
<td>1.5</td>
<td>46.1</td>
<td>2.5</td>
</tr>
<tr>
<td>S-3.5-I</td>
<td>30.0</td>
<td>0.5</td>
<td>35.8</td>
<td>0.9</td>
<td>41.0</td>
<td>1.3</td>
<td>45.5</td>
<td>1.8</td>
<td>54.0</td>
<td>3.1</td>
</tr>
<tr>
<td>S-4-I</td>
<td>53.7</td>
<td>1.4</td>
<td>60.5</td>
<td>2.1</td>
<td>67.0</td>
<td>3.0</td>
<td>77.0</td>
<td>4.0</td>
<td>82.5</td>
<td>5.0</td>
</tr>
<tr>
<td>S-5-I</td>
<td>62.2</td>
<td>1.7</td>
<td>70.6</td>
<td>2.6</td>
<td>78.4</td>
<td>3.7</td>
<td>90.2</td>
<td>4.9</td>
<td>96.9</td>
<td>6.3</td>
</tr>
<tr>
<td>S-6-I</td>
<td>62.4</td>
<td>0.9</td>
<td>71.0</td>
<td>1.2</td>
<td>78.4</td>
<td>1.7</td>
<td>85.4</td>
<td>2.1</td>
<td>93.2</td>
<td>2.7</td>
</tr>
<tr>
<td>S-7-I</td>
<td>71.0</td>
<td>1.1</td>
<td>82.0</td>
<td>1.5</td>
<td>91.0</td>
<td>2.0</td>
<td>99.4</td>
<td>2.6</td>
<td>108.0</td>
<td>3.3</td>
</tr>
<tr>
<td>S-8-I</td>
<td>100.2</td>
<td>1.3</td>
<td>107.4</td>
<td>1.6</td>
<td>121.0</td>
<td>2.3</td>
<td>134.0</td>
<td>3.1</td>
<td>154.0</td>
<td>4.1</td>
</tr>
<tr>
<td>S-10-I</td>
<td>115.4</td>
<td>1.6</td>
<td>124.4</td>
<td>1.9</td>
<td>141.2</td>
<td>2.8</td>
<td>156.8</td>
<td>3.9</td>
<td>180.4</td>
<td>5.1</td>
</tr>
</tbody>
</table>

The charts on this page are for our Advanced Fin Surface Design (AFSD) condensers.
A3. Model 3656 Water Pump Specification Sheets

3656/3756 S-Group Numbering System For All Units Built After June 1, 1998

Sistema de numeración del Grupo S, modelos 3656/3756, para todas las unidades fabricadas luego del 1° de junio de 1998

Various versions of the 3656 and 3756 S-Group are identified by a product code number on the pump label. This number is also the catalog number for the pump. The meaning of each digit in the product code number is shown below.

Not all combinations of motor, impeller, and seal options are available for every pump model. Please check with Goulds on non-cataloged numbers.

Not recommended for operation beyond printed H-Q curve. For critical application conditions consult factory.

Example Product Code, Ejemplo del código de producto

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF</td>
<td>H</td>
<td>2</td>
<td>G</td>
<td>H</td>
</tr>
</tbody>
</table>

High Head Impeller (1½ x 2 - GH Only), Impulsor de carga alta (1½ x 2 - GH únicamente)

<table>
<thead>
<tr>
<th>Mechanical Seal and O-ring, Sello mecánico y anillo en O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seal Code Código del sello</td>
</tr>
<tr>
<td>---------------------------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
</tbody>
</table>

Impeller Option Code, Código de opción de impulsor

<table>
<thead>
<tr>
<th>Impeller Code, Código del impulso</th>
<th>2BP</th>
<th>3BP</th>
<th>4BF</th>
<th>4BF</th>
<th>6BF</th>
<th>6BF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dia</td>
<td>Dia</td>
<td>Dia</td>
<td>Dia</td>
<td>Dia</td>
<td>Dia</td>
</tr>
<tr>
<td>A</td>
<td>6"</td>
<td>8"</td>
<td>5"</td>
<td>5"</td>
<td>5"</td>
<td>5"</td>
</tr>
<tr>
<td>B</td>
<td>6"</td>
<td>8"</td>
<td>5"</td>
<td>5"</td>
<td>5"</td>
<td>5"</td>
</tr>
<tr>
<td>C</td>
<td>6"</td>
<td>8"</td>
<td>5"</td>
<td>5"</td>
<td>5"</td>
<td>5"</td>
</tr>
<tr>
<td>D</td>
<td>6"</td>
<td>8"</td>
<td>5"</td>
<td>5"</td>
<td>5"</td>
<td>5"</td>
</tr>
<tr>
<td>E</td>
<td>6"</td>
<td>8"</td>
<td>5"</td>
<td>5"</td>
<td>5"</td>
<td>5"</td>
</tr>
<tr>
<td>F</td>
<td>6"</td>
<td>8"</td>
<td>5"</td>
<td>5"</td>
<td>5"</td>
<td>5"</td>
</tr>
<tr>
<td>G</td>
<td>6"</td>
<td>8"</td>
<td>5"</td>
<td>5"</td>
<td>5"</td>
<td>5"</td>
</tr>
<tr>
<td>H</td>
<td>6"</td>
<td>8"</td>
<td>5"</td>
<td>5"</td>
<td>5"</td>
<td>5"</td>
</tr>
<tr>
<td>J</td>
<td>6"</td>
<td>8"</td>
<td>5"</td>
<td>5"</td>
<td>5"</td>
<td>5"</td>
</tr>
<tr>
<td>K</td>
<td>6"</td>
<td>8"</td>
<td>5"</td>
<td>5"</td>
<td>5"</td>
<td>5"</td>
</tr>
<tr>
<td>L</td>
<td>6"</td>
<td>8"</td>
<td>5"</td>
<td>5"</td>
<td>5"</td>
<td>5"</td>
</tr>
</tbody>
</table>

Driver, Elemento motor

1 = 1 HP, ODP
2 = 3 HP, ODP
3 = 575 V, ODP
4 = 3 PH, TEFC
5 = 3 PH, TEF
8 = 575 V, XP
9 = 3 PH, TEF, PREPP
1 PH = Monofásico, 3 PH = Trifásico

HP Rating, Potencia nominal, HP

G = ½ HP F = 1½ HP J = 5 HP M = 15 HP
D = 2 HP G = 2 HP K = 7 HP N = 20 HP
E = 1½ HP H = 3 HP L = 10 HP

Drivers: Hertz/Pole/RPM, Elemento motor: Hertz/Poleas/RPM

1 = 60 Hz, 2 pole, 3000 RPM
2 = 60 Hz, 4 pole, 1750 RPM
3 = 60 Hz, 6 pole, 1150 RPM

Material, Material

BF = Bronze Fitted, Acessorios de bronce
Al = Al Iron, Todo hierro
All = All bronze, Todo bronce

Pump Size, Tamaño de bomba

3 = 1½ x 2 - 60HP
4 = 2 x 3 - 7

The 1x2 - 8 and I x 2 - 7 are only available in Bronze Fitted.

Los modelos 1 x 2 - 8 y 1 x 2 - 7 están disponibles con accesorios de bronce únicamente.

For frame mounted version, substitute the letters "FIRM" in these positions.

Para las versiones de montaje en bastidor, remplazar las letras en esta ubicación con "FIRM".

Goulds Pumps
3656 S-Group Materials of Construction
Materiales de construcción - Grupo S, modelo 3756

Back wearing ring on S-Group
(2½ x 3 – 7) only
Anillo de desgaste posterior en el
Grupo S (2½ x 3 – 7) únicamente.

ASI 1045 steel motor shaft
extension (typical)
Extensión del eje del motor de
acero AISI 1045 (típico)

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Item</th>
<th>Description</th>
<th>Materials, Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>Casting</td>
<td>Casing</td>
<td>All Iron All Bronze</td>
</tr>
<tr>
<td>101</td>
<td>Impeller</td>
<td>Impulsor</td>
<td>1001 1101</td>
</tr>
<tr>
<td>103</td>
<td>Casing wear ring, Anillo de desgaste de la carcasa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Adapter, Adaptador</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Seal housing, Cubierta del selo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>Impeller key, Chave del impulsor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Impeller bolt, Tornillo del impulsor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>370</td>
<td>Hex head cap screw (adapter to case)</td>
<td>Tornillo de cabeza hexagonal del adaptador a la carcasa</td>
<td></td>
</tr>
<tr>
<td>371</td>
<td>Hex head cap screw (adapter to motor)</td>
<td>Tornillo de cabeza hexagonal del adaptador al motor</td>
<td></td>
</tr>
</tbody>
</table>

Note:
For separate seal housing and adapter, construction, all bronze material only, no repair parts page.
Para la construcción separada del compartimiento del selo y el adaptador, materiales de bronce únicamente, consulte la página de piezas de repuesto.

Note:
Pumps will be shipped with top-vertical discharge position as standard. For other orientations, remove casing bolts - rotate discharge to desired position - replace and tighten bolts to 25 ft/ids. Note that discharge may extend below motor mounting surface in bottom-horizontal position; adequate clearance must be provided.
Las bombas salen de la fábrica con la descarga orientada en posición vertical superior de manera estándar. Para otras orientaciones, retire los tornillos de la carcasa, gire la descarga a la posición deseada, reemplace y apriete los tornillos a 25 ft/ids. Nota que la descarga puede extenderse por debajo de la superficie de montaje del motor en la posición horizontal inferior, por lo tanto, debe proveerse un espacio suficiente.
3656 S-Group Dimensions and Weights

Gruppo S, modelo 3656 - Peso y dimensiones

Pump Dimensions and Weights

<table>
<thead>
<tr>
<th>Pump Size</th>
<th>Suction Diameter</th>
<th>Discharge Diameter</th>
<th>CP Max.</th>
<th>DC Max.</th>
<th>DD</th>
<th>R</th>
<th>W</th>
<th>X</th>
<th>Y</th>
<th>Z</th>
<th>Weight (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 x 3 - 7</td>
<td>2</td>
<td>1</td>
<td>27</td>
<td>4%</td>
<td>3%</td>
<td>1%</td>
<td>4%</td>
<td>3%</td>
<td>3%</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>1 x 2 - 8</td>
<td>2</td>
<td>1</td>
<td>27</td>
<td>4%</td>
<td>3%</td>
<td>1%</td>
<td>4%</td>
<td>3%</td>
<td>3%</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>1 1/4 x 2 - 6</td>
<td>2</td>
<td>1</td>
<td>27</td>
<td>4%</td>
<td>3%</td>
<td>1%</td>
<td>4%</td>
<td>3%</td>
<td>3%</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>1 1/4 x 2 - 6</td>
<td>2</td>
<td>1</td>
<td>27</td>
<td>4%</td>
<td>3%</td>
<td>1%</td>
<td>4%</td>
<td>3%</td>
<td>3%</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>2 x 3 - 7</td>
<td>3</td>
<td>1 1/8</td>
<td>27</td>
<td>4%</td>
<td>3%</td>
<td>1%</td>
<td>4%</td>
<td>3%</td>
<td>3%</td>
<td>4%</td>
<td>3%</td>
</tr>
<tr>
<td>3 x 4 - 7</td>
<td>4</td>
<td>1 1/8</td>
<td>27</td>
<td>4%</td>
<td>3%</td>
<td>1%</td>
<td>4%</td>
<td>3%</td>
<td>3%</td>
<td>4%</td>
<td>3%</td>
</tr>
</tbody>
</table>

Motor Dimensions and Weights

<table>
<thead>
<tr>
<th>Frame Size JM</th>
<th>Length</th>
<th>Diameter</th>
<th>Weight (lbs.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>143</td>
<td>6 1/4</td>
<td>6 1/4</td>
<td>4</td>
</tr>
<tr>
<td>145</td>
<td>6 1/4</td>
<td>6 1/4</td>
<td>4</td>
</tr>
<tr>
<td>181</td>
<td>8 1/4</td>
<td>8 1/4</td>
<td>4</td>
</tr>
<tr>
<td>184</td>
<td>8 1/4</td>
<td>8 1/4</td>
<td>4</td>
</tr>
<tr>
<td>213</td>
<td>9 1/4</td>
<td>9 1/4</td>
<td>4</td>
</tr>
<tr>
<td>254 TC2</td>
<td>11 1/4</td>
<td>11 1/4</td>
<td>4</td>
</tr>
<tr>
<td>256 TC2</td>
<td>11 1/4</td>
<td>11 1/4</td>
<td>4</td>
</tr>
</tbody>
</table>

Motor Frames and Horsepower

<table>
<thead>
<tr>
<th>Motor Frame</th>
<th>3500 RPM</th>
<th>1750 RPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Phase</td>
<td>3 Phase</td>
<td>1 Phase</td>
</tr>
</tbody>
</table>

NOTE:

All pumps shipped in vertical discharge position. May be rotated in 90° increments. Tighten casing bolts to 25 ft-lbs torque.

NOTA:

Todas las bombas se embarcan con la descarga en posición vertical. Esta posición puede rotarse en incrementos de 90°. Ajustar los pernos de la carcasa a una torsión de 25 pies/libras.

Goulds Pumps
A5. Cylindrical Vibration Isolator

Item Details

Product Category: Material Handling > Mounts and Vibration Control > Cylindrical Vibration Isolators

Description
Cylindrical Vibration Isolator, Maximum Load Downward
Compression 125 Pounds, Maximum Load Sideways Shear 20 Pounds, Thread Size 3/8-16 Inch, Dimension A 1 9/16 Inches, Dimension B 1 Inch, Dimension C 5/8 Inch

Grainger Item: 3CC06
Price (ea): $2.67
Manufacturer: KARMAN RUBBER
Mfg. Model#: K37

Ship Qty: 1
Sell Qty (Will-Carry): 1

Usually Ships: Today
Catalog 394 Page: 2066

Select Qty

Price shown may not reflect your price. Log-in above or click here to register.

NOTES & RESTRICTIONS
See Catalog 394 Page 2066 for application and/or safety information.

ALTERNATE PRODUCTS

Description
Cylindrical Vibration Isolator, Maximum Load Downward
Compression 165 Pounds, Maximum Load Sideways Shear 55 Pounds, Thread Size 3/8-16 Inch, Dimension

Grainger Item#: 3CC08
Price (ea): $4.25
Usually Ships: Today

Select Qty

TECHNICAL SPECIFICATIONS

Dimensions (Inches) A: 1 9/16
Dimensions C (Inches): 5/8
Maximum Load Downward Compression (Pounds): 125
Maximum Load Sideways Shear (Pounds): 20
Thread Size: 3/8-16
Dimensions B: 1
A6. Modified Suction Accumulator (Refrigerant Tank)

ARC WELD CONSTRUCTION SEE DETAIL 3639-W
SEAL 6578-3 NIPPLE W/ PB898 PLUG & J0543 COVER
SEAL 9361-3 NIPPLE W/ PLUG & COVER
SEAL 7440 EM PIPE FIT W/ 444746
PNEUMATIC TEST AT 275 psig
POWDER PAINT BLACK

REFRIGERATION RESEARCH
BRIGHTON, MICHIGAN

<table>
<thead>
<tr>
<th>NO.</th>
<th>DATE</th>
<th>QTY</th>
<th>PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>12/06/02</td>
<td>8</td>
<td>8.025 O.D. X 1.88 WALL</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>01/13/03</td>
<td>8</td>
<td>8.025 ASME HEAD</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>16578-3</td>
<td>8.75 I.D. NIPPLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7495</td>
<td>1/2 - 14 NPT FEM. FITTING</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>X99996-1</td>
<td>5.00 I.D. NIPPLE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1186</td>
<td>MOUNTING BRACKET</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7028</td>
<td>ASME TAG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>7108-3</td>
<td>PART LABEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1 CU. STUB</td>
<td>875 O.D. X 0.049 SU. STUB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1 CU. STUB</td>
<td>500 O.D. X 0.035 C.U.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOLERANCES NOT SPECIFIED
FINISH MILL: +0.003
DECKMANN: ±0.005
ANGLES: ±1°
A7. Rupture Disc Data Sheet

GRAPHILOR

CARBONE OF AMERICA

SINGLE PIECE DISC INSTRUCTIONS
(SERIES 3)

TYPICAL INSTALLATION

![Diagram of single piece disc installation]

IMPORTANT NOTES:

1. All Graphilor® single piece burst discs have a stainless steel label, as shown below, affixed to the outer circumference.

<table>
<thead>
<tr>
<th>FLOW</th>
<th>CARB 2.92 x 10⁵ scfm-air</th>
<th>SIZE ½ in.</th>
<th>⒟</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LOT 3663</td>
<td>TORQUE 10 ft-lbs</td>
<td>BURST 200 PSIG ± 5% @ 70°F</td>
</tr>
</tbody>
</table>

Make sure the disc information agrees with the intended application.

2. Discs are designed to fit within the bolt circle of 150# or 300# ANSI flanges. Make sure disc is properly centered between flanges during installation.

3. It is important to install the disc in the correct flow direction. This is noted by an arrow on the label.

4. Flange faces should be parallel to each other in order to eliminate excessive bolting forces when installing disc.

5. The vent side gasket is furnished with the disc because the gasket material and inside diameter are critical to the burst disc accuracy.

6. The process (or pressure) side gasket, furnished by customer, must be compatible with the process fluid and therefore the preferred type is a standard 150# ANSI TFE envelope gasket with a soft ⅛" thick filler. Do not use a gasket having a metal insert.

7. Burst pressure shown on label has been established at ambient temperature. Elevated temperatures may cause a reduction in the actual burst pressure of the disc.
ONE-PIECE BAND HEATERS

1½" (4cm) & 2½" (6cm) Wide DB & DBW Series

- Rugged, Reliable, Heavy Duty
- 5" (13cm) to 12½" (32cm) Barrel Diameter
- Barrel Temperatures up to 900°F

APPLICATIONS
- Heating barrels of plastic injection molding machines and extruders
- Die and die holder heating of plastic extruders and blow molding machines
- Autoclaves
- Burn-out ovens
- Heated kettles
- Fluidized beds
- Heat treating pipes
- Any application requiring heat applied to a cylindrical surface

To Order (Specify Model No.)

<table>
<thead>
<tr>
<th>Watts</th>
<th>W/In²</th>
<th>Barrel Dia. In. (cm)</th>
<th>Model No.</th>
<th>Price</th>
<th>Wt lbs. (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DB-1½ inches (4cm), 240/480 volts**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>770</td>
<td>33</td>
<td>5 (15)</td>
<td>DB-050772</td>
<td>557</td>
<td>1.5 (7)</td>
</tr>
<tr>
<td>1000</td>
<td>42</td>
<td>5 (15)</td>
<td>DB-055102</td>
<td>594</td>
<td>1.75 (8)</td>
</tr>
<tr>
<td>1250</td>
<td>35</td>
<td>6 (15)</td>
<td>DB-060572</td>
<td>618</td>
<td>2.19 (9)</td>
</tr>
<tr>
<td>1500</td>
<td>34</td>
<td>6 (15)</td>
<td>DB-065102</td>
<td>638</td>
<td>2.19 (9)</td>
</tr>
<tr>
<td>1800</td>
<td>27</td>
<td>7 (18)</td>
<td>DB-070102</td>
<td>659</td>
<td>2.19 (9)</td>
</tr>
<tr>
<td>2200</td>
<td>21</td>
<td>7 (18)</td>
<td>DB-074122</td>
<td>680</td>
<td>2.19 (9)</td>
</tr>
<tr>
<td>2500</td>
<td>20</td>
<td>7 (18)</td>
<td>DB-080122</td>
<td>700</td>
<td>2.19 (9)</td>
</tr>
<tr>
<td>3000</td>
<td>18</td>
<td>8 (22)</td>
<td>DB-084152</td>
<td>730</td>
<td>2.5 (11)</td>
</tr>
<tr>
<td>3500</td>
<td>15</td>
<td>9 (25)</td>
<td>DB-090152</td>
<td>760</td>
<td>2.5 (11)</td>
</tr>
<tr>
<td>4000</td>
<td>12</td>
<td>9 (25)</td>
<td>DB-094172</td>
<td>790</td>
<td>3 (14)</td>
</tr>
<tr>
<td>5000</td>
<td>10</td>
<td>10 (25)</td>
<td>DB-100192</td>
<td>810</td>
<td>3 (14)</td>
</tr>
<tr>
<td>6000</td>
<td>8</td>
<td>10½ (26)</td>
<td>DB-104122</td>
<td>840</td>
<td>3 (14)</td>
</tr>
<tr>
<td>7000</td>
<td>6</td>
<td>11½ (29)</td>
<td>DB-114122</td>
<td>940</td>
<td>3 (14)</td>
</tr>
<tr>
<td>8000</td>
<td>5</td>
<td>12½ (32)</td>
<td>DB-124152</td>
<td>1080</td>
<td>3 (14)</td>
</tr>
</tbody>
</table>

| DB-2½ inches (6cm), 240/480 volts** |
1505	30	6½ (17)	DB-064152	88	3.75 (1.7)
1800	31	7½ (19)	DB-074182	95	3.75 (1.7)
2000	35	8 (20)	DB-080202	105	3.75 (1.7)
2250	34	8½ (22)	DB-084222	104	3.75 (1.7)
2500	35	9 (25)	DB-090552	109	3.75 (1.7)
2800	36	10 (25)	DB-100252	118	3.75 (1.7)
3000	36	10¼ (27)	DB-104252	127	3.75 (1.7)
3250	36	11½ (29)	DB-114352	132	4 (1.8)

** The two 240V strip heating elements must be wired in series for 480V.

NOTE: Watt densities are based on heated area of contact surface only.

FEATURES

Ten times the life—only slightly higher cost. This economical long life heavy duty band heater has a ½ inch thick chrome steel (stainless) sheath, which offers ten times the life of a mica band heater at only a slightly higher cost than mica, and considerably lower than ceramic band and aluminum shoe designs.

Flexible one-piece construction for easy installation and removal. The unheated section between heated halves functions as a hinge and permits repeated opening and closing for moving heaters from one application to another. The heavy duty spring loaded clamping bolt pulls the heater tight to the work and maintains tightness by compensating for expansion.

Heavy duty — uses a pair of formed 240V OMEGALUX® PT series strip heaters.

Spring loaded — for tight fit with Inconel® spring end nickel-plated clamping bolts and nuts—maintains tightness.

Uniform high temperature capability. Highly compacted refractory insulation assures efficient heat transfer, therefore lower resistance wire temperatures.

SPECIFICATIONS

Power: 240/480V**
Wattage: 750 to 3250 watts.
Sheath Material: Chrome Steel
Maximum Sheath Temperature: 1200°F
HEATING TAPE WITH PERCENTAGE CONTROLLER

HTWC Series

- Reliable
- Integral Percentage Controller
- Silicone Rubber Encapsulated Heating Tape
- High Temperature Rating of 500°F

The tape consists of a flexible heating strip 1" wide and of varying lengths with a permanently incorporated temperature controller. Standard tapes are available for either 120 or 240 volt operation and develop 72 watts per linear foot. These tapes are completely safe when operated according to directions, and with reasonable care, will give long service.

This economical semi-automatically controlled heating tape has been developed by OMEGALUX® for use in small scale heating applications.

DO NOT FOLD OR ROLL TAPE WHEN IT IS BEING HEATED.

APPLICATIONS
- Heat Tracing for Temperature maintenance or heat loss.
- Plastic Sheet Bending.

SPECIFICATIONS
- Power: 120 or 240V
- Wattage: 72 watts/linear foot
- Heating Element: Fine gage stranded resistance wires insulated with fiberglass yarn and completely enclosed in a silicone rubber extrusion
- Controller: Rugged and dependable percentage controller. Includes power cord and 2 prong plug.

To Order (Specify Model Number) MOST POPULAR HIGHLIGHTED!

<table>
<thead>
<tr>
<th>Watts</th>
<th>Volts</th>
<th>Size</th>
<th>Model Number</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>120</td>
<td>1" x 2"</td>
<td>HTWC101-002</td>
<td>$97</td>
</tr>
<tr>
<td>288</td>
<td>120</td>
<td>1" x 4"</td>
<td>HTWC101-004</td>
<td>105</td>
</tr>
<tr>
<td>432</td>
<td>120</td>
<td>1" x 6"</td>
<td>HTWC101-006</td>
<td>115</td>
</tr>
<tr>
<td>576</td>
<td>120</td>
<td>1" x 8"</td>
<td>HTWC101-008</td>
<td>123</td>
</tr>
<tr>
<td>720</td>
<td>120</td>
<td>1" x 10"</td>
<td>HTWC101-010</td>
<td>132</td>
</tr>
<tr>
<td>144</td>
<td>240</td>
<td>1" x 2"</td>
<td>HTWC102-002</td>
<td>97</td>
</tr>
<tr>
<td>288</td>
<td>240</td>
<td>1" x 4"</td>
<td>HTWC102-004</td>
<td>105</td>
</tr>
<tr>
<td>432</td>
<td>240</td>
<td>1" x 6"</td>
<td>HTWC102-006</td>
<td>115</td>
</tr>
<tr>
<td>576</td>
<td>240</td>
<td>1" x 8"</td>
<td>HTWC102-008</td>
<td>123</td>
</tr>
<tr>
<td>720</td>
<td>240</td>
<td>1" x 10"</td>
<td>HTWC102-010</td>
<td>132</td>
</tr>
</tbody>
</table>

CAUTION AND WARNING!
Fire and electrical shock may result if products are used improperly or installed or used by non-qualified personnel. See inside back cover for additional warnings.
Elastomeric Pipe Insulation & Accessories

Temperature Range: -40° F To 220° F

A flexible elastomeric thermal insulation used to retard heat gain and prevent condensation or frost formation on cold water plumbing, chilled-water and refrigerant lines. Also retards heat flow for hot water plumbing, liquid heating, dual temperature piping and many solar systems. The expanded closed cell structure makes it an efficient insulation and an effective vapor barrier. Commonly used to insulate pre-charged line sets for leading o.e.m.'s and distributors of air conditioners and heat pumps.

Pipe insulation slides easily over pipe or tubing. A factory applied coating of talc on the smooth inner surface speeds application. When applied to existing lines, tubing is slit lengthwise and snapped into place. Slitting can be done on the job with a razor or sharp knife. All seams and butt joints are to be sealed with contact adhesive.

If Used Outdoors, it Should Be Coated With Exterior Acrylic Latex Paint.

Accessories:

<table>
<thead>
<tr>
<th>Desc.</th>
<th>Thickness (In.)</th>
<th>W. (In.)</th>
<th>Length (In.)</th>
<th>Order #</th>
<th>Price Ea.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flat Sheet</td>
<td>½</td>
<td>36</td>
<td>48</td>
<td>37030798</td>
<td>$22.38</td>
</tr>
<tr>
<td>Flat Sheet</td>
<td>¾</td>
<td>36</td>
<td>48</td>
<td>37030806</td>
<td>$34.00</td>
</tr>
<tr>
<td>Flat Sheet</td>
<td>1</td>
<td>36</td>
<td>48</td>
<td>37030814</td>
<td>$34.93</td>
</tr>
</tbody>
</table>

1. Plint Adhesive: 37030822 $8.25
2. Quart Adhesive: 37030830 $13.52

DOT REGULATED. May require special handling.

Pipe Insulation Data Sheet

<table>
<thead>
<tr>
<th>Pipe/Tube Insulation</th>
<th>OD (In.)</th>
<th>¼” Thick</th>
<th>K” Thick</th>
<th>Price Ea.</th>
</tr>
</thead>
<tbody>
<tr>
<td>¼”</td>
<td>⅛”</td>
<td>147</td>
<td>37030400</td>
<td>$2.09</td>
</tr>
<tr>
<td>½”</td>
<td>⅛”</td>
<td>85</td>
<td>37030418</td>
<td>$1.50</td>
</tr>
<tr>
<td>¾”</td>
<td>⅛”</td>
<td>71</td>
<td>37030426</td>
<td>$2.46</td>
</tr>
<tr>
<td>1”</td>
<td>⅛”</td>
<td>63</td>
<td>37030434</td>
<td>$2.59</td>
</tr>
<tr>
<td>1½”</td>
<td>¼”</td>
<td>53</td>
<td>37030442</td>
<td>$2.77</td>
</tr>
<tr>
<td>1½”</td>
<td>⅞”</td>
<td>46</td>
<td>37030459</td>
<td>$3.13</td>
</tr>
<tr>
<td>1½”</td>
<td>1⅞”</td>
<td>35</td>
<td>37030467</td>
<td>$3.55</td>
</tr>
<tr>
<td>1½”</td>
<td>2⅞”</td>
<td>30</td>
<td>37030475</td>
<td>$4.35</td>
</tr>
<tr>
<td>2”</td>
<td>2”</td>
<td>16</td>
<td>37030483</td>
<td>$5.34</td>
</tr>
</tbody>
</table>

1. Refers to the number of 6 foot lengths contained in each carton
Pipe Plug Probe

This high pressure thermocouple plug sensor is ideal for vessel applications, pressurized containers and applications requiring mounted NPT security for fixed readings. Its 304SS sheath has a 6.4 mm (0.25") dia. probe that extends ½" from a ¼" NPT pipe plug, with 1.8 m (6") of 20 AWG fiberglass insulated stranded thermocouple grade wire with stainless steel overbraiding and either stripped leads or a miniature male connector.

For grounded or ungrounded junctions, pressure rating is 2500 PSI. The hex flats are 0.560" on the flats, 16.1 mm (0.635") between points. Hex flats width is 5.8 mm (0.23"). Maximum temp rating:
Types J, K, E: 480°C (900°F); Type T: 370°C (700°F).

For low pressure applications grounded junctions may be replaced with an exposed junctions for faster response time. Prices are the same for grounded and exposed junctions. Simply replace "G" with "E" in model number.

TC-(E)-NPT-G-72

$39
Grounded Junction Stripped Leads

TC-(E)-NPT-U-72

$39
Ungrounded Junction with Stripped Leads

*Specify calibration: J, K, T or E. Other lengths available, consult Sales Department. For exposed junction, replace G with E in model number, same price. For subminiature connectors, add suffix "-SMP" and $5 to price. For stainless steel overbraiding.

Ordering Example: TC-K-NPT-G-72 is a grounded pipe plug probe with stripped leads, $34
THE FLOW SENSOR THAT MAKES SHORT WORK OF YOUR FLOW MEASUREMENTS

FP-5100/5300 Paddlewheel Flow Sensors

$253
Basic Unit

Patented “flow-through” rotor design ensures accurate, linear output to ±1%

Shown Actual Size

Streamline your flow measurement operation with the FP-5100 Series flow sensor. Using this compact flow sensor, a matched sensor installation fitting an OMEGA® flow meter or controller, and ordinary handtools, you can assemble a complete flow monitoring or controlling system in minutes. Accurate to ±0.2 fps with repeatability at ±0.1 fps, this insertion sensor operates on a simple electromechanical principle, proven in thousands of liquid flow applications worldwide. It all adds up to precision, dependability, and convenience—basic advantages that are quickly surpassing its in-line competition.

A TIMESAVER YOU CAN BANK ON

Convert your maintenance hours into minutes with the FP-5300. Should a sensor, rotor, or O-ring need to be replaced, it takes only seconds. Reduce your system downtime substantially with a standalone FP-5300 sensor, or simply add a Wet Tap Assembly and eliminate downtime completely. Combined with the FP-5300 during initial installation, the Wet Tap allows sensor removal without system shut-down. Optional local or remote capability lets you place your meter up to 200 feet away without signal amplification, and you can install the FP-5300 in pipe sizes ranging from ¼ inch to 36 inches without a lot of additional cost, because the price of the FP-5300 increases only slightly for larger pipe sizes.

RUGGED CONSTRUCTION FOR LONG WEAR

Available in a choice of chemically resistant, non-contaminating housing materials, the FP-5300 stands up to the harshest environments. The glass-filled polypropylene housing version is lightweight but strong, which makes it ideal for handling a wide range of liquids, including corrosive fluids in chemical processing. For processes involving acids and solvents, the PVDF (polyvinylidene fluoride) housing version is a tough fluorocarbon that is highly resistant to more severe fluids. (See page F-25 for more information on OMEGA’s all-PVDF flow monitoring systems.)
Flow Measurement Simple and Accurate
The sensor works on a simple but precise electromechanical principle based on measuring the rate and volume of flow in your pipe. Four permanent magnets, imbedded in the rotor blades, spin past a coil in the sensor body. As the fluid flow causes the rotor to move, a sine wave signal is produced, directly proportional to the flowrate. The patented “open cell” feature of the rotor ensures a linear, repeatable output, up to 23 fps, with accuracy of ±0.2 fps. The result is minimal head loss and no cavitation.

Replacement rotor/paddlewheel FMK-1538-2, $36.
Replacement titanium rotor pin FMK-1546-1, $7.50.
Replacement PVDF rotor and rotor pin: FMK-1545-1, $46.
Accuracy: 1% Full Scale

SPECIFICATIONS
Accuracy: ±1% full scale
Output Signal: 1 V p-p/pf/s
Output Frequency: 5 Hz/pf/s nominal
Flow Rate Range: 1 to 20 pf/s
Source Impedance: 8 Kohm
Maximum Pressure:
FP-5300 Series: 20 psi max @ 20°C (68°F)
FP-5100 Series: 200 psi max @ 20°C (68°F)
Minimum Temperature: 0°C (32°F)
Maximum Temperature:
See page F-24 for complete temperature and pressure rating
Pressure Drop: Equal to 2.5 m (8') of straight pipe
Material: Transducer Housing: glass-filled polypropylene;
O-Rings: Viton; Shaft: Titanium (PVDF-opt:); Rotor: PVDF
Maximum % Solids: 1% of fluid volume, non-abrasive,
nonmagnetic, <100 micron diameter and length
Standard Cable Length: 7.5 m (25')
Max. Viscosity: 1 centipoise (water);
up to 5 cp above 0.5 fps velocity
Quick, Easy Conduit Installation

Designed to allow optional conduit installation, the FP-5300 easily lets you comply with local codes requiring conduit protection. For instance, pry off the plug on top of the sensor; underneath, you'll find a ¼ inch (F) NPT thread. Using an optional conduit adaptor fitting kit, you can connect your conduit (FPSP-5139 conduit adapter kit, $27), and an optional instrument back-cover kit will provide everything you need for quick conduit connection to a meter or controller. Additionally, you can adapt to both rigid and flexible liquid-tight conduits, protecting your system hookup from harsh elements and mechanical damage.

See Page F-25 and F-26 for compatible fittings.

See page F-16 for Flowrates
See pages F-25 and F-26 for Required Fittings

Paddlewheel Flow Sensors

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Housing Material</th>
<th>Shaft Material</th>
<th>Pipe Size (in)</th>
<th>Weight g (oz)</th>
<th>Sensor Length mm (in)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP-5100</td>
<td>Polypropylene</td>
<td>Titanium</td>
<td>½ to 4</td>
<td>341 (12)</td>
<td>89 (3.50)</td>
<td>$253</td>
</tr>
<tr>
<td>FP-5101</td>
<td>Polypropylene</td>
<td>Titanium</td>
<td>6 to 8</td>
<td>341 (12)</td>
<td>127 (5.00)</td>
<td>264</td>
</tr>
<tr>
<td>FP-5102</td>
<td>Polypropylene</td>
<td>Titanium</td>
<td>6 to 10 or larger</td>
<td>454 (16)</td>
<td>107 (4.20)</td>
<td>286</td>
</tr>
<tr>
<td>FP-5110</td>
<td>Polypropylene</td>
<td>Hastelloy</td>
<td>½ to 4</td>
<td>341 (12)</td>
<td>89 (3.50)</td>
<td>453</td>
</tr>
</tbody>
</table>

For all-plastic unit with PVDF shaft, add suffix “-AP” to FP-5100 and add $40 to price. Ordering Example: FP-5300, paddlewheel sensor, plus
FP-5310, 1 inch PVC fitting, $253 + $40 = $293. See pages F-25 and F-26 for required fittings.

Wet Tap Assembly* (see page F-10)

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Wet Tap Valve Assembly Material</th>
<th>Sensor Housing Material</th>
<th>Shaft Material</th>
<th>Size (in)</th>
<th>Weight lb</th>
<th>Sensor Length mm (in)</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>FP-3113</td>
<td>PVC</td>
<td>Polypropylene</td>
<td>Titanium</td>
<td>½ to 4</td>
<td>2.4 (5.25)</td>
<td>298 (11.75)</td>
<td>7194</td>
</tr>
<tr>
<td>FP-3114</td>
<td>PVC</td>
<td>Polypropylene</td>
<td>Titanium</td>
<td>6 to 8</td>
<td>2.4 (5.25)</td>
<td>330 (13.00)</td>
<td>800</td>
</tr>
<tr>
<td>FP-3115</td>
<td>PVC</td>
<td>Polypropylene</td>
<td>Titanium</td>
<td>10 and up</td>
<td>2.4 (5.25)</td>
<td>406 (16.00)</td>
<td>840</td>
</tr>
</tbody>
</table>

*Pipe installation fitting not included.
SENSOR INSTALLATION FITTINGS

For FP-5300, FP-5100, FP8500, FP-5600 and FP-5200 Series

FP-5200 Series Only

<table>
<thead>
<tr>
<th>Pipe Size</th>
<th>Lead-Free Galvanized Iron</th>
<th>Carbon Steel</th>
<th>Copper/Bronze (Brass)</th>
<th>Stainless Steel Metal Sensor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/4"</td>
<td>N/A</td>
<td></td>
<td>FP-5305CU</td>
<td>$211, FP-5205*</td>
</tr>
<tr>
<td>1/8"</td>
<td>N/A</td>
<td></td>
<td>FP-5307CU</td>
<td>$211, FP-5207*</td>
</tr>
<tr>
<td>1"</td>
<td>FP-5310GI</td>
<td>$103</td>
<td>FP-5310CU</td>
<td>$211, FP-5210*</td>
</tr>
<tr>
<td>1-1/4"</td>
<td>FP-5312GI</td>
<td>$103</td>
<td>FP-5312CU</td>
<td>$211, FP-5212</td>
</tr>
<tr>
<td>1-1/2"</td>
<td>FP-5315GI</td>
<td>$103</td>
<td>FP-5315CU</td>
<td>$211, FP-5215</td>
</tr>
<tr>
<td>2"</td>
<td>FP-5320GI</td>
<td>$130</td>
<td>FP-5320CS</td>
<td>$168, FP-5220</td>
</tr>
<tr>
<td>2-1/2"</td>
<td>FP-5325GI*</td>
<td>168</td>
<td>FP-5325CS*</td>
<td>168, FP-5225*</td>
</tr>
<tr>
<td>3"</td>
<td>FP-5330GI*</td>
<td>168</td>
<td>FP-5330BR*</td>
<td>168, FP-5230</td>
</tr>
<tr>
<td>4"</td>
<td>FP-5340GI*</td>
<td>168</td>
<td>FP-5340BR*</td>
<td>168, FP-5240</td>
</tr>
<tr>
<td>5"</td>
<td>FP-5350GI*</td>
<td>168</td>
<td>FP-5350BR*</td>
<td>168, FP-5250</td>
</tr>
<tr>
<td>6"</td>
<td>FP-5360GI*</td>
<td>168</td>
<td>FP-5360BR*</td>
<td>168, FP-5260</td>
</tr>
<tr>
<td>8"</td>
<td>FP-5380GI*</td>
<td>168</td>
<td>FP-5380BR*</td>
<td>168, FP-5280</td>
</tr>
<tr>
<td>10"</td>
<td>FP-5381GI</td>
<td>168</td>
<td>FP-5381BR*</td>
<td>168, FP-5281</td>
</tr>
<tr>
<td>12"</td>
<td>FP-5382GI*</td>
<td>168</td>
<td>FP-5382BR*</td>
<td>168, FP-5282</td>
</tr>
</tbody>
</table>

*Models with saddle-type fittings (pictured in bottom row)

NOTE: All 10" and larger fittings limited to 60°C (140°F) liquid temperature due to PVC Insert.

All copper fittings: “CU” suffix for copper and brass tubing have sweat-or end fittings; brass fittings 2 inches and smaller are ‘WS’ threaded fits; above 2 inches, brass fittings are Brazed fit.

All FP-52XX fittings with suffix “S” are galvanized iron double strap-on; theses without suffix “S” are weld-on stainless steel.

Note: Please specify pipe schedule if other than schedule 40 for PVC or iron saddles, and for Weid锆s and Brazed fittings. Please contact OMEGA for special fitting requirements not covered in this chart.
GENERAL PURPOSE 100 MILLIVOLT
OUTPUT PRESSURE SENSOR
AVAILABLE IN ABSOLUTE AND GAGE MODELS

PX302 SERIES
$180

- Rugged ALL Stainless
 Steel Construction
- Integral Strain Relief for
 Cable
- High Sensitivity 10 mV/V
 Output
- NEMA 3 Enclosure

SPECIFICATIONS
Excitation: 10 Vdc (5 to 15 Vdc Limits)
Output: 10mV/V 100mV±1mV @ 10V
Accuracy: 0.25% FS (linearity,
hysteresis, repeatability)
Zero Balance: ±2 mV
Span Accuracy: ±1%
Long Term Stability: ±0.5% FS
Typical Life: 100 million cycles
Operating Temperature:
0 to 100°F (-18 to 71 °C)
Compensated Temperature:
30 to 160°F (-1 to 71 °C)
Total Thermal Error: 1% FS max
Proof Pressure: 200%, 10000 psi max
Input Resistance: 15000Ω minimum
Response Time: 1 msec
Shock: 50 g @ 11 m/sec
Vibration: 1.5 g 10-2000 Hz
Wetted Parts: 316 SS 300 Series
Stainless Steel
Pressure Port: %NPT male,
Electrical Conn.: 4 conduit, 22 AWG,
PVC unshielded, 3 ft pigtail cable
Weight: 4.6 oz (131) to 1000 psi
6.7 oz (190 g) from 1000 psi
Snubbers protect sensors from fluid
spikes/shockwaves!
Dimensions: See previous page

PX302 0-15 to 0-10,000 psi

Most Popular Models Highlighted

To Order (Specify Model Number)

<table>
<thead>
<tr>
<th>RANGE</th>
<th>MODEL NO.</th>
<th>PRICE</th>
<th>COMPATIBLE METERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 15 psig</td>
<td>PX302-015GV</td>
<td>$180</td>
<td>DP41-S, DP200-020, DP400-S</td>
</tr>
<tr>
<td>0 to 50 psig</td>
<td>PX302-050GV</td>
<td>$180</td>
<td>DP41-S, DP200-020, DP400-S</td>
</tr>
<tr>
<td>0 to 100 psig</td>
<td>PX302-100GV</td>
<td>$180</td>
<td>DP41-S, DP200-020, DP400-S</td>
</tr>
<tr>
<td>0 to 200 psig</td>
<td>PX302-200GV</td>
<td>$180</td>
<td>DP41-S, DP200-020, DP400-S</td>
</tr>
<tr>
<td>0 to 300 psig</td>
<td>PX302-300GV</td>
<td>$180</td>
<td>DP41-S, DP200-020, DP400-S</td>
</tr>
<tr>
<td>0 to 500 psig</td>
<td>PX302-500GV</td>
<td>$180</td>
<td>DP41-S, DP200-020, DP400-S</td>
</tr>
<tr>
<td>0 to 1000 psig</td>
<td>PX302-1KGV</td>
<td>$180</td>
<td>DP41-S, DP200-020, DP400-S</td>
</tr>
<tr>
<td>0 to 2000 psig</td>
<td>PX302-2KGV</td>
<td>$180</td>
<td>DP41-S, DP200-020, DP400-S</td>
</tr>
<tr>
<td>0 to 3000 psig</td>
<td>PX302-3KGV</td>
<td>$180</td>
<td>DP41-S, DP200-020, DP400-S</td>
</tr>
<tr>
<td>0 to 5000 psig</td>
<td>PX302-5KGV</td>
<td>$180</td>
<td>DP41-S, DP200-020, DP400-S</td>
</tr>
<tr>
<td>0 to 7500 psig</td>
<td>PX302-7.5KGV</td>
<td>$180</td>
<td>DP41-S, DP200-020, DP400-S</td>
</tr>
<tr>
<td>0 to 10000 psig</td>
<td>PX302-10KGV</td>
<td>$180</td>
<td>DP41-S, DP200-020, DP400-S</td>
</tr>
</tbody>
</table>

A14. Pressure Transducer Specification Sheet

PX302 Series

Shown with DP41-S Meter and PS-4 Snubber
Meter and Snubber Sold Separately.

Comes with complete operator’s manual.

Ordering Example: PX302-050GV pressure transducer with 50 psig full scale rating and
PS-4E pressure snubber for water and light oils. $180 x 10 = $1800.
SCXI Chassis

NI SCXI-1000, NI SCXI-1000DC, NI SCXI-1001
- Shielded enclosures for SCXI modules
- Low-noise environment for signal conditioning
- Rugged, compact chassis
- Forced air cooling
- Optional rack mounting
- NI-DAQ driver software simplifies configuration and measurement
- 3 internal analog buses
- Timing circuitry for high-speed multiplexing
- AC, DC, or battery-power options

Operating Systems
- Windows 2000/NT/XP/Me/9x
- Mac OS

Recommended Software
- LabVIEW
- LabWindows/CVI
- Measurement Studio
- Lockout
- VILogger

Driver Software*
- NI-DAQ
- NI-SWITCH
* included with DAQ device or switch

Overview
National Instruments offers rugged, low-noise SCXI chassis to house, power, and control your SCXI modules and conditioned signals. The unique SCXI chassis architecture includes the SCXIbus, which routes analog and digital signals and acts as the communication conduit between modules. Chassis control circuitry manages this bus, synchronizing the timing between each module and the DAQ device. With this architecture, you can scan input channels from several modules in several chassis at rates up to 333 kS/s for every DAQ device.

The versatility of SCXI lies in its various chassis options and expandability. You can choose from a number of different standard AC or DC power options. You can control the system by connecting directly to an E Series or basic multifunction DAQ device. You can even daisy-chain up to eight chassis for control by a single DAQ device. Regardless of your configuration, programming the system does not change. You use the same function calls you use with a DAQ device by itself. NI-DAQ or NI-SWITCH driver software handles all low-level programming.

The SCXIbus
The SCXIbus is a queued analog and digital bus located in the backplane of the SCXI chassis. Modules inserted into the chassis connect to this backplane automatically. This bus acts as a conduit for signal routing, transferring data, programming modules, and passing timing signals.

Chassis Control Circuitry
Each SCXI chassis includes control circuitry. This circuitry handles all signal routing on the SCXIbus. During high-speed analog input operations, it controls which input signals are connected to the bus and routed back to the DAQ device. It also ensures tight synchronization between the SCXI modules and the DAQ device.

Expandability
If your initial system requires more SCXI modules than one chassis can hold, or your system requirements change, simply add another chassis. With the SCXI expandable architecture, you can daisy-chain up to eight chassis to a single multifunction DAQ device. Whether you are using a single-chassis or multichassis system, you can still acquire data at rates up to 333 kS/s.

Power Options
These SCXI chassis offer a number of standard AC power options. Simply choose the option for your country or a country compatible with your power specifications. If you move your system to another country, you can easily reconfigure the system for any of the other AC power configurations.
SCXI 32-Channel Analog Input Modules

Overview
The National Instruments SCXI-1100, SCXI-1102/B/C, and the NI SCXI-1104 are a variety of 32-channel analog input modules. The programmable gain and filter settings are ideal for conditioning a variety of millivolt, volt, and current inputs. Each module multiplexes the 32 channels into a single channel of the DAQ device, and you can add modules to increase channel count.

Analog Input
SCXI-1100
The SCXI-1102 is an economical solution for millivolt, volt, and current outputs. The SCXI-1100 is an economical solution for millivolt, volt, and current inputs. All 32 channels are multiplexed into a single programmable gain instrumentation amplifier (PGA) and jumper-selectable lowpass filter. Because each module multiplexes the 32 channels into a single channel of the DAQ device, you can add modules to increase channel count. For thermocouple measurements, the SCXI-1102 offers gain and filter settings on a per-channel basis and provides better performance and higher sampling rates.

Table 1. Module Compatibility

<table>
<thead>
<tr>
<th>Module</th>
<th>±100 mV to ±10 V</th>
<th>±60 V</th>
<th>±2.5 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCXI-1100</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>SCXI-1102/B</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>SCXI-1102/C</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>SCXI-1104</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
<tr>
<td>SCXI-1104/C</td>
<td>✗</td>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

SCXI-1102B, SCXI-1102C, SCXI-1104, SCXI-1104C
Each analog input channel passes through a PGA and lowpass filter, before it is multiplexed. With this architecture, you program the input range of each channel independently. Filter settings are preset and specific to each module: (1102C - 200 Hz, 1102C - 10 kHz, 1104 - 2 Hz, 1104C - 10 kHz). You can scan channels at full hardware rate (up to 3 µs per channel) at any gain setting. Each channel includes input protection circuitry for up to ±42 V for the SCXI-1102/B/C, and ±60 V for the SCXI-1104/C.

INFO CODES
For more information or to order products online, visit ni.com/info and enter:
sclx100
sclx1102b
sclx1102c
sclx1104
sclx1104c
BUY ONLINE!
A17. SCXI-1100 and SCXI-1102C Modules Schematics

SCXI 32-Channel Analog Input Modules

Figure 1. SCXI 1100 Block Diagram
A18. SCXI-1163R Module Specification Sheets

32-Channel Solid-State Relay

NI SCXI-1163R
- 32 optically isolated solid-state relays
- Relays arranged in 8 banks of 4x1 multiplexer
- 750 operations/s
- 200 mA at 240 VDC/100 ms capacity
- Fully software programmable

Operating Systems
- Windows 2000/NT/XP/Me/9x

Recommended Software
- LabVIEW
- LabWindows/CVI
- Measurement Studio for Visual C++
- NI Switch Executive

Other Compatible Software
- Visual Basic
- C/C++

Driver Software (included)
- NI-SWITCH

<table>
<thead>
<tr>
<th>Module</th>
<th>Function</th>
<th>Description</th>
<th>Switching Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCXI-1163R</td>
<td>Multiplexer</td>
<td>8 banks of 4x1 SSR multiplexer</td>
<td>240 VAC/VDC</td>
</tr>
</tbody>
</table>

Table 1. SCXI-1163R Switch Specifications

Overview
The National Instruments SCXI-1163R includes 32 normally open, or Form A, optically isolated solid-state relays, arranged into eight banks of four relays with one common pole for each bank. You can use the NI SCXI-1163R to switch high-voltage loads, up to 240 VAC/VDC and up to 200 mA.

The SCXI-1163R is programmed serially over the SCXIbus. You can therefore easily integrate SCXI-1163R modules into existing SCXI systems without additional DAQ devices or cabling. The modules can also operate in parallel mode when cabled directly to a plug-in DIO device.

Applications
You can use an SCXI system equipped with the SCXI-1163R in a variety of industrial and laboratory applications. The SCXI-1163R safely isolates the computer from large common-mode voltages, ground loops, and voltage spikes that often occur in industrial and research environments. You can use the solid-state relay channels to switch a wide range of AC and DC voltage and power signals to control field devices.

SCXI Relay Control
Every SCXI switch system requires an external switch controller. The switch controller uses the digital communications bus on the SCXI chassis to control the switch circuitry. The NI PXI-4070 FlexDMM and NI 4021 switch controller are common examples of SCXI switch controllers. Refer to page 507 for more information on choosing the correct switch controller.

Ordering Information
NI SCXI 1163R ... 776572-63R
Includes switch module and NI-SWITCH driver software.

Accessories
- SCXI 1326 terminal block 776574-26
- PCI-4021 switch controller 778273-01
- PXI-4021 switch controller 778270-01

For information on extended warranty and value-added services, see page 16.
See page 507 for accessory and cable information.
32-Channel Solid-State Relay

Signal Connection
Field digital signals connect to screw terminals located in the SCXI-1326 terminal block, which plugs directly into the front of the SCXI module, or the TBX-1326, a DIN-rail mountable terminal block that you connect to the SCXI-T163R using the SH48 48-B shielded cable.

Software
All National Instruments PXI and SCXI switch modules are shipped with NI-SWITCH, an IVI-compliant driver offering complete functionality for all switch modules. For additional assistance in configuring, programming, and managing higher channel count switching systems, NI Switch Executive software offers an easy-to-use intelligent switch management and visual routing environment. See page 112 to learn more about the features of NI Switch Executive.

Specifications
Typical for 25 °C unless otherwise stated.

Input Characteristics
- Number of relays: 32 organized as 8 optically isolated banks of 4 relays each
- Relay type: Normally open (Form A), solid-state relays
- Maximum switching voltage: AC 240 VAC, DC 240 VDC
- Maximum switching capacity: 200 mA
- Common mode isolation: 2500 Vrms between banks, and bank to ground
- On resistance: 0Ω
- Output capacitance: 750 pF at 50 V, 1 MHz
- Leakage current: 1 μA maximum
- Transfer rate in serial mode: 1 word = 32 bits, 750 words/s
- Relay set time: 0.6 ms
- Relay reset time: 0.1 ms
- Power on state: Relays open

Physical
- Dimensions: 172 by 203 by 3.0 cm (6.8 by 8.0 by 1.2 in.)

Environment
- Operating temperature: 0 to 50 °C
- Storage temperature: -20 to 70 °C
- Relative humidity: 5 to 95% noncondensing

*Transfer rate depends largely on the computer and software. These tests were made using an A/MIO-16E-2 installed in a 450 MHz Pentium III computer running LabVIEW and Windows NT.
APPENDIX B

DETAILED CALCULATIONS
B1. Test Section Pressure Drop Calculations
B2. Apparatus Pressure Drop Calculations
B3. Calculations of Refrigerant Heat Loads
B4. Flow Meter Calibration Curve
B5. Pressure Transducer Calibration Curve
B6. A Mathcad Worksheet for the Calculation of the Uncertainty in the Fouling Factor
B1. Test Section Pressure Drop Calculations

Inside tube geometries to be tested:

\[
\text{TubeGeometries} := \begin{pmatrix}
.616 & .015 & 25 & 10 \\
.615 & .015 & 25 & 30 \\
.615 & .015 & 48 & 30 \\
.613 & .015 & 25 & 45 \\
.614 & .012 & 35 & 45 \\
.613 & .015 & 35 & 45 \\
.614 & .020 & 35 & 45 \\
.613 & .015 & 48 & 45
\end{pmatrix}
\]

Inside diameter:

\[D_i := \text{TubeGeometries}^{(\omega)} \text{ in}\]

Fin height:

\[e := \text{TubeGeometries}^{(\eta)} \text{ in}\]

Helix angle:

\[\alpha := \text{TubeGeometries}^{(\phi)}\]

Number of starts:

\[n_s := \text{TubeGeometries}^{(\psi)}\]

Physical properties of water: assumed temperature of 70 F

\[\mu := .578 \times 10^{-3} \text{ lb ft s}^{-1}\]

\[\rho := 62.4 \text{ lb ft}^{-3}\]

Water velocities to be tested

\[v_{\text{high}} := 8 \text{ ft s}^{-1}\]
\[v_{\text{average}} := \frac{5}{s} \]
\[v_{\text{low}} := \frac{2}{s} \]

Cross sectional area of the tube:
\[A_c := \frac{\pi D_i^2}{4} \]

Mass flow rates of water:
\[m_{\text{dothigh}} := v_{\text{high}} \rho \cdot A_c \]
\[m_{\text{dotavg}} := v_{\text{average}} \rho \cdot A_c \]
\[m_{\text{dotlow}} := v_{\text{low}} \rho \cdot A_c \]

Mass velocities for given flows:
\[G_{\text{high}} := \frac{m_{\text{dothigh}}}{A_c} \]
\[G_{\text{avg}} := \frac{m_{\text{dotavg}}}{A_c} \]
\[G_{\text{low}} := \frac{m_{\text{dotlow}}}{A_c} \]

Reynolds numbers for given flow velocities:
\[Re_{\text{high}} := \frac{D_i \cdot G_{\text{high}}}{\mu} \]
\[Re_{\text{avg}} := \frac{D_i \cdot G_{\text{avg}}}{\mu} \]
Friction factors for each tube geometry at the given flow velocities:

\[f_{\text{high}} := \left[\frac{0.108 \cdot \text{Re}_{\text{high}} - 0.283 \cdot n_s \cdot 0.221 \cdot \left(\frac{e}{D_i} \right)^{0.785} \cdot 0.78}{\mu} \right] \]

\[
\begin{pmatrix}
5.797 \times 10^{-3} \\
7.403 \times 10^{-3} \\
0.012 \\
8.125 \times 10^{-3} \\
8.851 \times 10^{-3} \\
0.011 \\
0.013 \\
0.014
\end{pmatrix}
\]

\[f_{\text{avg}} := \left[\frac{0.108 \cdot \text{Re}_{\text{avg}} - 0.283 \cdot n_s \cdot 0.221 \cdot \left(\frac{e}{D_i} \right)^{0.785} \cdot 0.78}{\mu} \right] \]

\[
\begin{pmatrix}
6.622 \times 10^{-3} \\
8.456 \times 10^{-3} \\
0.014 \\
9.281 \times 10^{-3} \\
0.01 \\
0.012 \\
0.015 \\
0.015
\end{pmatrix}
\]

\[f_{\text{low}} := \left[\frac{0.108 \cdot \text{Re}_{\text{low}} - 0.283 \cdot n_s \cdot 0.221 \cdot \left(\frac{e}{D_i} \right)^{0.785} \cdot 0.78}{\mu} \right] \]
Calculations for High Test Tube Water Velocity.

Entrance head loss:

For a tee, used as an elbow entering the branch

\[K_i := 1.5 \]

\[H_i := K_i \frac{v_{\text{high}}^2}{2} \]

\[H_i = 1.492 \frac{\text{lbf} \cdot \text{ft}}{\text{lb}} \]

Head loss due to globe valve upstream of the test section:

Globe valve half Open

\[K_{gv} := 4.5 \]

\[H_{gv} := K_{gv} \frac{v_{\text{high}}^2}{2} \]

\[H_{gv} = 4.476 \frac{\text{ft} \cdot \text{lbf}}{\text{lb}} \]

Head loss due to union:

\[K_u := .04 \]

\[H_u := K_u \frac{v_{\text{high}}^2}{2} \]
$H_u = 0.04 \frac{\text{ft} \cdot \text{lbf}}{\text{lb}}$

Head loss due to friction over the test section:

Length of the test section:

$L := 10 \cdot \text{ft}$

$H_{TS} := \left(4 \cdot f_{\text{high}} \cdot \frac{L}{D_t} \cdot \frac{v_{\text{high}}^2}{2} \right)$

$H_{TS} = \begin{bmatrix} 4.493 \\ 5.747 \\ 9.558 \\ 6.328 \\ 6.882 \\ 8.227 \\ 10.276 \\ 10.525 \end{bmatrix} \frac{\text{ft} \cdot \text{lbf}}{\text{lb}}$

Head loss from flow meter:

For a rotary-type flow meter with a star-shaped disk

$K_{fm} := 10$

$H_{fm} := K_{fm} \cdot \frac{v_{\text{high}}^2}{2}$

$H_{fm} = 9.946 \frac{\text{ft} \cdot \text{lbf}}{\text{lb}}$

Head loss over thermocouple mounting:

For a tee with the branch blanked off

$K_{th} := .4$

$H_{th} := K_{th} \cdot \frac{v_{\text{high}}^2}{2}$
\[H_{th} = 0.398 \text{ft} \frac{\text{lbf}}{\text{lb}} \]

Head loss through downstream globe valve:

Fully-open globe valve

\[K_{GVO} = 0.17 \]

\[H_{GVO} := K_{GVO} \frac{v_{\text{high}}^2}{2} \]

\[H_{GVO} = 0.169 \text{ft} \frac{\text{lbf}}{\text{lb}} \]

Head loss at exit (tee branching flow):

\[K_{exit} := 1 \]

\[H_{exit} := K_{exit} \frac{v_{\text{high}}^2}{2} \]

\[H_{exit} = 0.995 \text{ft} \frac{\text{lbf}}{\text{lb}} \]

Head loss for connecting tubing:

Relative roughness for drawn tubing

\(\varepsilon := 0.00005 \cdot \text{ft} \)

\[f := \frac{0.25}{ \left(\log \left(\frac{\varepsilon}{3.7D_i} + \frac{5.74}{Re_{\text{high}}} \right) \right)^2} \]

Approximate total length of tubing connecting the instruments

\[L_{ct} := 1.5 \cdot \text{ft} \]

\[H_{ct} := \left(f \cdot \frac{L_{ct} \cdot v_{\text{high}}^2}{D_i \cdot \frac{2}{2}} \right) \]
Total head loss:

\[H_{\text{Total}} = (H_i + H_{\text{gv}} + H_u + H_{\text{TS}} + H_u + H_{\text{fm}} + H_{\text{th}} + H_{\text{GVO}} + H_{\text{ct}} + H_{\text{exit}}) \]

\[
H_{\text{Total}} = \begin{pmatrix}
22.678 \\
23.933 \\
27.745 \\
24.517 \\
25.069 \\
26.416 \\
28.464 \\
28.714
\end{pmatrix}
\text{ ft lbf lbf}
\]

Calculations for Average Test Tube Water Velocity.

Entrance head loss:

For a tee, used as an elbow entering the branch

\[K_i := 1.5 \]

\[H_i := K_i \frac{v_{\text{average}}^2}{2 \cdot g} \]

\[H_i = 0.583 \text{ ft} \]

Head loss due to globe valve upstream of the test section:

Globe valve half open

\[K_{\text{gv}} := 4.5 \]

\[H_{\text{gv}} := K_{\text{gv}} \frac{v_{\text{average}}^2}{2 \cdot g} \]

\[H_{\text{gv}} = 1.748 \text{ ft} \]

Head loss due to union:

\[K_u := .04 \]
Head loss due to friction over the test section:

Length of the test section

\[L = 10 \text{ ft} \]

\[H_{TS} := \left(4 \cdot \frac{f_{avg}}{D_i} \cdot \frac{L}{v_{average}} \cdot \frac{v_{average}^2}{2 \cdot g} \right)^{0.5} \]

\[
\begin{pmatrix}
2.005 \\
2.564 \\
4.265 \\
2.823 \\
3.071 \\
3.671 \\
4.585 \\
4.696
\end{pmatrix}
\]

Head loss from flow meter:

For a rotary-type flow meter with a star-shaped disk

\[K_{fm} := 10 \]

\[H_{fm} := K_{fm} \cdot \frac{v_{average}^2}{2 \cdot g} \]

\[H_{fm} = 3.885 \text{ ft} \]

Head loss over thermocouple mounting:

For a tee with the branch blanked off

\[K_{th} := .4 \]
\[H_{th} := K_{th} \frac{v_{\text{average}}^2}{2g} \]

\[H_{th} = 0.155 \text{ ft} \]

Head loss through downstream globe valve:

Fully-open globe valve

\[K_{GVO} := .17 \]

\[H_{GVO} := K_{GVO} \frac{v_{\text{average}}^2}{2g} \]

\[H_{GVO} = 0.066 \text{ ft} \]

Head loss at exit:

\[K_{exit} := 1 \]

\[H_{exit} := K_{exit} \frac{v_{\text{average}}^2}{2g} \]

\[H_{exit} = 0.389 \text{ ft} \]

Head loss for connecting tubing:

Relative roughness for drawn tubing

\[\varepsilon := .000005 \cdot \text{ft} \]

\[f := \frac{.25}{\left(\log \left(\frac{\varepsilon}{3.7D_i} + \frac{5.74}{\text{Re}_{\text{avg}}^{.9}} \right) \right)^2} \]

Approximate total length of tubing connecting the instruments

\[L_{ct} := 1.5 \cdot \text{ft} \]
\[H_{ct} := f \left(\frac{L_{ct}}{D_i} \frac{v_{average}}{2g} \right) \]

Total head loss:
\[H_{Total} := (H_i + H_{gv} + H_u + H_{TS} + H_u + H_{fm} + H_{th} + H_{GVO} + H_{ct} + H_{exit}) \]

\[
H_{Total} = \begin{pmatrix}
9.136 \\
9.696 \\
11.396 \\
9.956 \\
10.203 \\
10.803 \\
11.717 \\
11.829 \\
\end{pmatrix} \text{ ft}
\]

Calculations for Low Test Tube Water Velocity.

Entrance head loss:
For a tee, used as an elbow entering the branch

\[K_i := 1.5 \]

\[H_i := K_i \frac{v_{low}^2}{2g} \]

\[H_i = 0.093 \text{ ft} \]

Head loss due to globe valve upstream of the test section:

Globe valve half open

\[K_{gv} := 4.5 \]

\[H_{gv} := K_{gv} \frac{v_{low}^2}{2g} \]

\[H_{gv} = 0.28 \text{ ft} \]
Head loss due to union:

\[
K_u := .04
\]

\[
H_u := K_u \frac{v_{\text{low}}^2}{2g}
\]

\[
H_u = 2.486 \times 10^{-3} \text{ ft}
\]

Head loss due to friction over the test section:

Length of the test section

\[
L = 10 \text{ ft}
\]

\[
H_{TS} := \left(4f_{\text{low}} \frac{L}{D_i} \frac{v_{\text{low}}^2}{2g}\right)
\]

\[
H_{TS} = \begin{pmatrix}
0.416 \\
0.532 \\
0.884 \\
0.585 \\
0.637 \\
0.761 \\
0.951 \\
0.974
\end{pmatrix} \text{ ft}
\]

Head loss from flow meter:

For a rotary-type flow meter with a star-shaped disk

\[
K_{fm} := 10
\]

\[
H_{fm} := K_{fm} \frac{v_{\text{low}}^2}{2g}
\]

\[
H_{fm} = 0.622 \text{ ft}
\]

Head loss over thermocouple mounting:
For a tee with the branch blanked off

\[K_{th} := 0.4 \]

\[H_{th} := K_{th} \cdot \frac{(v_{low})^2}{2g} \]

\[H_{th} = 0.025 \text{ ft} \]

Head loss through downstream globe valve:

\[K_{GVO} := 0.17 \]

Fully-open globe valve

\[H_{GVO} := K_{GVO} \cdot \frac{v_{low}^2}{2g} \]

\[H_{GVO} = 0.011 \text{ ft} \]

Head loss at exit:

\[K_{exit} := 1 \]

\[H_{exit} := K_{exit} \cdot \frac{v_{low}^2}{2g} \]

\[H_{exit} = 0.062 \text{ ft} \]

Head loss for connecting tubing:

Relative roughness for drawn tubing

\[\epsilon := 0.00005 \cdot \text{ft} \]

\[f := \frac{0.25}{\left(\log \left(\frac{\epsilon}{3.7D_i} + \frac{5.74}{Re_{low}^{0.9}} \right) \right)^2} \]

Approximate total length of tubing connecting the instruments
L_{ct} := 1.5 \text{ ft}

H_{ct} := \left(f \frac{l_{ct} v_{low}^2}{D_i \cdot 2 \cdot g} \right)

Total head loss:

\[H_{Total} := (H_i + H_{gv} + H_u + H_{TS} + H_u + H_{fm} + H_{dh} + H_{GVO} + H_{ct} + H_{exit}) \]

\[
H_{Total} = \begin{bmatrix}
1.568 \\
1.684 \\
2.037 \\
1.738 \\
1.789 \\
1.914 \\
2.103 \\
2.126
\end{bmatrix} \text{ ft}
\]
B2. Apparatus Pressure Drop Calculations

Calculation for a Water Test Velocity of 2 ft/s

Constants

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1(\text{lb/ft}^2))</td>
<td>2117.664</td>
</tr>
<tr>
<td>(P_2(\text{lb/ft}^2))</td>
<td>2116.8</td>
</tr>
<tr>
<td>(V_1(\text{ft/s}))</td>
<td>0</td>
</tr>
<tr>
<td>(V_2(\text{ft/s}))</td>
<td>0</td>
</tr>
<tr>
<td>(Z_1(\text{ft}))</td>
<td>2</td>
</tr>
<tr>
<td>(z_2(\text{ft}))</td>
<td>5</td>
</tr>
<tr>
<td>(Q(\text{ft}^3/\text{s}))</td>
<td>0.036771</td>
</tr>
<tr>
<td>(\rho(\text{lb/ft}^3))</td>
<td>62.2</td>
</tr>
<tr>
<td>(\mu(\text{lb/ft*sec}))</td>
<td>0.000578</td>
</tr>
<tr>
<td>(G_c)</td>
<td>32.174</td>
</tr>
</tbody>
</table>

Flow Rate

\[Q = 0.036771 \times 16.5039 = 16.5039 \text{ gpm} \]

Density

\[\rho = 62.2 \text{ lb/ft}^3 \]

Viscosity

\[\mu = 0.000578 \text{ lb/ft*sec} \]

Piping and HX Pressure Drop

<table>
<thead>
<tr>
<th>Description</th>
<th>(D_i(\text{ft}))</th>
<th>(L(\text{ft}))</th>
<th>(\epsilon(\text{ft}))</th>
<th>(K)</th>
<th>(V(\text{ft/s}))</th>
<th>(Re)</th>
<th>(f)</th>
<th>(H(\text{ft}))</th>
<th>(dP(\text{psi}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.375 in Tubing</td>
<td>0.105417</td>
<td>75</td>
<td>5E-06</td>
<td>26.95</td>
<td>4.21303 1.925E+04</td>
<td>0.0212</td>
<td>11.587</td>
<td>5.00495</td>
<td></td>
</tr>
<tr>
<td>Heat Exchanger 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipes in Parallel</td>
<td>0.065417</td>
<td>23.5</td>
<td>5E-06</td>
<td>2</td>
<td>2.73512 1.925E+04</td>
<td>0.0262</td>
<td>1.32879</td>
<td>0.573964</td>
<td>12.9158 5.578914</td>
</tr>
</tbody>
</table>

Loss Coefficients Applied

<table>
<thead>
<tr>
<th>Description</th>
<th>(K)</th>
<th>(Amount)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elbow</td>
<td>0.75</td>
<td>11</td>
<td>8.25</td>
</tr>
<tr>
<td>Tee, Branch Closed</td>
<td>0.4</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>Tee</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Globe valve</td>
<td>6.4</td>
<td>2</td>
<td>12.8</td>
</tr>
<tr>
<td>Sudden Enlargement</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sudden Contraction</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Entrance</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Exit</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[\sum K = 26.95 \]
Manifold Pressure Drop (2.625 in tubing)

<table>
<thead>
<tr>
<th>Section</th>
<th>D(ft)</th>
<th>Q(\text{ft}^3/\text{s})</th>
<th>V(ft/s)</th>
<th>Re</th>
<th>f</th>
<th>H(ft)</th>
<th>dP(psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.205417</td>
<td>0.032685</td>
<td>0.98625</td>
<td>2.180E+04</td>
<td>0.02533</td>
<td>0.0188439</td>
<td>0.0081</td>
</tr>
<tr>
<td>2</td>
<td>0.205417</td>
<td>0.028599</td>
<td>0.86297</td>
<td>1.908E+04</td>
<td>0.02618</td>
<td>0.0145237</td>
<td>0.0063</td>
</tr>
<tr>
<td>3</td>
<td>0.205417</td>
<td>0.024514</td>
<td>0.73969</td>
<td>1.635E+04</td>
<td>0.02723</td>
<td>0.0107569</td>
<td>0.0046</td>
</tr>
<tr>
<td>4</td>
<td>0.205417</td>
<td>0.020428</td>
<td>0.61641</td>
<td>1.363E+04</td>
<td>0.02855</td>
<td>0.0075458</td>
<td>0.0033</td>
</tr>
<tr>
<td>5</td>
<td>0.205417</td>
<td>0.016343</td>
<td>0.49313</td>
<td>1.090E+04</td>
<td>0.03029</td>
<td>0.0048937</td>
<td>0.0021</td>
</tr>
<tr>
<td>6</td>
<td>0.205417</td>
<td>0.012257</td>
<td>0.36985</td>
<td>8.176E+03</td>
<td>0.0328</td>
<td>0.0028046</td>
<td>0.0012</td>
</tr>
<tr>
<td>7</td>
<td>0.205417</td>
<td>0.008171</td>
<td>0.24656</td>
<td>5.450E+03</td>
<td>0.0369</td>
<td>0.0012842</td>
<td>0.0006</td>
</tr>
<tr>
<td>8</td>
<td>0.205417</td>
<td>0.004086</td>
<td>0.12328</td>
<td>2.725E+03</td>
<td>0.04596</td>
<td>0.0003419</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

Test Section Pressure Drop (Calculated by Ian Tubman)

<table>
<thead>
<tr>
<th>Maximum at 2 ft/s</th>
<th>(ft)</th>
<th>(psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.126</td>
<td>0.9183</td>
</tr>
</tbody>
</table>

Total Pressure Drop:

<table>
<thead>
<tr>
<th>W/m</th>
<th>18.08892 lbf*ft/lbm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>41.37193 lbf*ft/s</td>
</tr>
</tbody>
</table>
Calculation for a Water Test Velocity of 5 ft/s

Constants

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1 (lb/ft^2)</td>
<td>2117.664</td>
<td></td>
</tr>
<tr>
<td>P2 (lb/ft^2)</td>
<td>2116.8</td>
<td></td>
</tr>
<tr>
<td>V1 (ft/s)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>V2 (ft/s)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>z1 (ft)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>z2 (ft)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Q (ft^3/s)</td>
<td>0.091927</td>
<td>gpm</td>
</tr>
<tr>
<td>rho (lb/ft^3)</td>
<td>62.2</td>
<td></td>
</tr>
<tr>
<td>mu (lb/ft*s)</td>
<td>0.000578</td>
<td></td>
</tr>
<tr>
<td>Gc</td>
<td>32.174</td>
<td></td>
</tr>
</tbody>
</table>

Piping and HX Pressure Drop

<table>
<thead>
<tr>
<th>Description</th>
<th>D_i (ft)</th>
<th>L (ft)</th>
<th>eps (ft)</th>
<th>K</th>
<th>V (ft/s)</th>
<th>Re</th>
<th>f</th>
<th>H (ft)</th>
<th>dP (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.375 in Tubing</td>
<td>0.105417</td>
<td>75</td>
<td>5E-06</td>
<td>26.95</td>
<td>10.5326</td>
<td>1.195E+05</td>
<td>0.0175</td>
<td>67.9666</td>
<td>29.3578</td>
</tr>
<tr>
<td>Heat Exchanger 4 Pipes in Parallel</td>
<td>0.065417</td>
<td>23.5</td>
<td>5E-06</td>
<td>2</td>
<td>6.83779</td>
<td>4.814E+04</td>
<td>0.0212</td>
<td>6.99841</td>
<td>3.022923</td>
</tr>
</tbody>
</table>

Total Pressure Drop: 74.965 psi

Loss Coefficients Applied

<table>
<thead>
<tr>
<th>Description</th>
<th>K</th>
<th>Amount</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elbow</td>
<td>0.75</td>
<td>11</td>
<td>8.25</td>
</tr>
<tr>
<td>Tee, Branch Closed</td>
<td>0.4</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>Tee</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Globe Valve</td>
<td>6.4</td>
<td>2</td>
<td>12.8</td>
</tr>
<tr>
<td>Sudden Enlargement</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sudden Contraction</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Entrance</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Exit</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Total Loss Coefficients: 26.95
Continued

Manifold Pressure Drop (2.625 in tubing)

<table>
<thead>
<tr>
<th>Section</th>
<th>D(ft)</th>
<th>Q(ft³/s)</th>
<th>V(ft/s)</th>
<th>Re</th>
<th>f</th>
<th>H(ft)</th>
<th>dP(psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.205417</td>
<td>0.081713</td>
<td>2.46564</td>
<td>5.450E+04</td>
<td>0.02047</td>
<td>0.1133041</td>
<td>0.0489</td>
</tr>
<tr>
<td>2</td>
<td>0.205417</td>
<td>0.071499</td>
<td>2.15743</td>
<td>4.769E+04</td>
<td>0.02108</td>
<td>0.0871801</td>
<td>0.0377</td>
</tr>
<tr>
<td>3</td>
<td>0.205417</td>
<td>0.061285</td>
<td>1.84923</td>
<td>4.088E+04</td>
<td>0.02183</td>
<td>0.0644358</td>
<td>0.0278</td>
</tr>
<tr>
<td>4</td>
<td>0.205417</td>
<td>0.051071</td>
<td>1.54102</td>
<td>3.406E+04</td>
<td>0.02276</td>
<td>0.0450829</td>
<td>0.0195</td>
</tr>
<tr>
<td>5</td>
<td>0.205417</td>
<td>0.040856</td>
<td>1.23282</td>
<td>2.725E+04</td>
<td>0.02399</td>
<td>0.0291361</td>
<td>0.0126</td>
</tr>
<tr>
<td>6</td>
<td>0.205417</td>
<td>0.030642</td>
<td>0.92461</td>
<td>2.044E+04</td>
<td>0.02574</td>
<td>0.0166148</td>
<td>0.0072</td>
</tr>
<tr>
<td>7</td>
<td>0.205417</td>
<td>0.020428</td>
<td>0.61641</td>
<td>1.363E+04</td>
<td>0.02855</td>
<td>0.0075458</td>
<td>0.0033</td>
</tr>
<tr>
<td>8</td>
<td>0.205417</td>
<td>0.010214</td>
<td>0.3082</td>
<td>6.813E+03</td>
<td>0.03456</td>
<td>0.0019729</td>
<td>0.0009</td>
</tr>
<tr>
<td>Total</td>
<td>0.3652725</td>
<td>0.1578</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test Section Pressure Drop (Calculated by Ian Tubman)

<table>
<thead>
<tr>
<th>Maximum at 5 ft/s</th>
<th>(ft)</th>
<th>(psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.829</td>
<td>5.1095</td>
<td></td>
</tr>
</tbody>
</table>

Total Pressure Drop:

| 87.16 | 37.648 |

<table>
<thead>
<tr>
<th>W/m</th>
<th>90.1451</th>
<th>lbf*ft/lbm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>515.4383</td>
<td>lbf*ft/s</td>
</tr>
<tr>
<td></td>
<td>=</td>
<td>0.93716063</td>
</tr>
</tbody>
</table>
Calculation for a Water Test Velocity of 8 ft/s

Constants
- \(P_1 (\text{lb/ft}^2) \): 2117.664 initial pressure
- \(P_2 (\text{lb/ft}^2) \): 2116.8 final pressure
- \(V_1 (\text{ft/s}) \): 0 initial velocity
- \(V_2 (\text{ft/s}) \): 0 final velocity
- \(z_1 (\text{ft}) \): 2 initial elevation
- \(z_2 (\text{ft}) \): 5 final elevation
- \(Q (\text{ft}^3/\text{s}) \): 0.147083 = 66.0155 gpm flow rate
- \(\rho (\text{lb/ft}^3) \): 62.2 density
- \(\mu (\text{lb/ft}*s) \): 0.000578 viscosity
- \(G_c \): 32.174

Piping and HX Pressure Drop
- **1.375 in Tubing**
 - \(D_i (\text{ft}) \): 0.105417
 - \(L (\text{ft}) \): 75
 - \(\epsilon (\text{ft}) \): 5E-06
 - \(K \): 26.95
 - \(V (\text{ft/s}) \): 16.8521
 - \(Re \): 1.912E+05
 - \(f \): 0.0161
 - \(H (\text{ft}) \): 169.442
 - \(dP (\text{psi}) \): 73.18935

- **Heat Exchanger 4 Pipes in Parallel**
 - \(D_i (\text{ft}) \): 0.065417
 - \(L (\text{ft}) \): 23.5
 - \(\epsilon (\text{ft}) \): 5E-06
 - \(K \): 2
 - \(V (\text{ft/s}) \): 10.9405
 - \(Re \): 7.702E+04
 - \(f \): 0.0193
 - \(H (\text{ft}) \): 16.5987
 - \(dP (\text{psi}) \): 7.169716

Loss Coefficients Applied

<table>
<thead>
<tr>
<th>Description</th>
<th>K</th>
<th>Amount</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elbow</td>
<td>0.75</td>
<td>11</td>
<td>8.25</td>
</tr>
<tr>
<td>Tee, Branch Closed</td>
<td>0.4</td>
<td>1</td>
<td>0.4</td>
</tr>
<tr>
<td>Tee</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Globe Valve</td>
<td>6.4</td>
<td>2</td>
<td>12.8</td>
</tr>
<tr>
<td>Sudden Enlargement</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sudden Contraction</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Entrance</td>
<td>0.5</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Exit</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[26.95\]
Continued

Manifold Pressure Drop (2.625 in tubing)

<table>
<thead>
<tr>
<th>Section</th>
<th>D(ft)</th>
<th>Q(ft³/s)</th>
<th>V(ft/s)</th>
<th>Re</th>
<th>f</th>
<th>H(ft)</th>
<th>dP(psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.205417</td>
<td>0.130741</td>
<td>3.94502</td>
<td>8.721E+04</td>
<td>0.01852</td>
<td>0.2854754</td>
<td>0.1233</td>
</tr>
<tr>
<td>2</td>
<td>0.205417</td>
<td>0.114398</td>
<td>3.45189</td>
<td>7.631E+04</td>
<td>0.01904</td>
<td>0.2195075</td>
<td>0.0948</td>
</tr>
<tr>
<td>3</td>
<td>0.205417</td>
<td>0.098055</td>
<td>2.95876</td>
<td>6.540E+04</td>
<td>0.01968</td>
<td>0.1621084</td>
<td>0.07</td>
</tr>
<tr>
<td>4</td>
<td>0.205417</td>
<td>0.081713</td>
<td>2.46564</td>
<td>5.450E+04</td>
<td>0.02047</td>
<td>0.1133041</td>
<td>0.0489</td>
</tr>
<tr>
<td>5</td>
<td>0.205417</td>
<td>0.06537</td>
<td>1.97251</td>
<td>4.360E+04</td>
<td>0.02151</td>
<td>0.0731273</td>
<td>0.0316</td>
</tr>
<tr>
<td>6</td>
<td>0.205417</td>
<td>0.049028</td>
<td>1.47938</td>
<td>3.270E+04</td>
<td>0.02298</td>
<td>0.0416205</td>
<td>0.018</td>
</tr>
<tr>
<td>7</td>
<td>0.205417</td>
<td>0.032685</td>
<td>0.98625</td>
<td>2.180E+04</td>
<td>0.02533</td>
<td>0.0188439</td>
<td>0.0081</td>
</tr>
<tr>
<td>8</td>
<td>0.205417</td>
<td>0.016343</td>
<td>0.49313</td>
<td>1.090E+04</td>
<td>0.03029</td>
<td>0.0048937</td>
<td>0.0021</td>
</tr>
</tbody>
</table>

Test Section Pressure Drop

Maximum at 8 ft/s

<table>
<thead>
<tr>
<th></th>
<th>(ft)</th>
<th>(psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Pressure Drop:</td>
<td>215.72</td>
<td>93.179</td>
</tr>
</tbody>
</table>

W/m 218.7053 lbf*ft/lbm

Power

<table>
<thead>
<tr>
<th></th>
<th>lbf*ft/s</th>
<th>=</th>
<th>hp</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000.84</td>
<td></td>
<td></td>
<td>3.63789085</td>
</tr>
</tbody>
</table>
B3. Calculations of Refrigerant Heat Loads

Fluid properties and tank dimensions:

Outside diameter:

\[\text{OD}_{\text{tank}} := 8.625 \text{ in} \]

Tank thickness:

\[t_{\text{tank}} := 0.188 \text{ in} \]

Tank height:

\[h_{\text{tank}} := 18 \text{ in} \]

Internal Diameter

\[\text{ID}_{\text{tank}} := \text{OD}_{\text{tank}} - t_{\text{tank}} \]

Specific volume of R-134a saturated liquid:

\[v_{fR134a} := 0.0136 \frac{\text{ft}^3}{\text{lb}} \]

Specific internal energy of R-134a saturated liquid:

\[u_{fR134a} := 40.61 \frac{\text{BTU}}{\text{lb}} \]

Specific internal energy of R-134a saturated vapor:

\[u_{gR134a} := 105.6 \frac{\text{BTU}}{\text{lb}} \]

Density of water

\[\rho_{\text{H}_2\text{O}} := 62.4 \frac{\text{lb}}{\text{ft}^3} \]

Specific heat of water
\(c_{pH2O} := 4181 \frac{J}{kg \cdot K}\)

Volume of the tank:

\[V_{tank} := \pi \left(\frac{ID_{tank}}{2} \right)^2 \cdot h_{tank}\]

\[V_{tank} = 4.356 \text{ gal}\]

Mass of the refrigerant contained in the tank:

\[M_{R134a} := \frac{V_{tank}}{V_{R134a}}\]

\[M_{R134a} = 42.821 \text{ lb}\]

Water inlet and outlet temperatures:

\[T_{H2Oin} := (70 + 460)R\]

\[T_{H2Oout} := T_{H2Oin} + 3R\]

Water velocity and mass flowrate:

\[\text{velocity}_{H2O} := \left(\frac{2}{5} \right) \frac{\text{ft}}{\text{s}}\]

Cross-sectional area of the tube:

\[A_{c\text{tube}} := \pi \left(\frac{0.614 \text{ in}}{2} \right)^2\]

Mass flow rate of water:

\[m_{\text{dotH2O}} := A_{c\text{tube}} \cdot \rho_{H2O} \cdot \text{velocity}_{H2O}\]

\[m_{\text{dotH2O}} = \left(\frac{0.257}{0.642} \right) \frac{\text{lb}}{\text{s}}\]
Heat load:

\[Q_{\text{dot}} := \dot{m}_{\text{H}_2\text{O}} \cdot c_{\text{p,H}_2\text{O}} \left(T_{\text{H}_2\text{O}_{\text{out}}} - T_{\text{H}_2\text{O}_{\text{in}}} \right) \]

\[Q_{\text{dot}} = \begin{pmatrix} 811.1 \\ 2027.7 \\ 3244.4 \end{pmatrix} \text{ W} \]

Energy required to boil the refrigerant:

\[U_{\text{fg,R}134a} := M_{R134a} \left(u_{gR134a} - u_{fR134a} \right) \]

\[U_{\text{fg,R}134a} = 2.936 \times 10^6 \text{ J} \]

Refrigerant boiling time required:

\[\text{Boiling time} := \frac{U_{\text{fg,R}134a}}{Q_{\text{dot}}} \]

\[\text{Boiling time} = \begin{pmatrix} 60.333 \\ 24.133 \\ 15.083 \end{pmatrix} \text{ min} \]
B4. Flow Meter Calibration Curve

\[y = 0.0351x \]

\[R^2 = 0.9785 \]
B5. Pressure Transducer Calibration Curve

\[y = 5.0125x + 3.023 \]

\[R^2 = 1 \]
B6. A Mathcad Worksheet for the Calculation of the Uncertainty in the Fouling Factor.

PART 1. Calculation of the uncertainty in the mass flow rate calibration plot.

The mass (lbs) and time (sec) values measured in the calibration process were:

\[
\begin{align*}
M_1 &= 78.2 & M_2 &= 92 & M_3 &= 107.2 & M_4 &= 86.3 & M_5 &= 104.1 & M_6 &= 102 & M_7 &= 107.5 \\
t_1 &= 185.1 & t_2 &= 120.5 & t_3 &= 107.8 & t_4 &= 63.2 & t_5 &= 65.8 & t_6 &= 50.3 & t_7 &= 50.7
\end{align*}
\]

The resulting mass flow rates are calculated and stored in an array:

\[
\begin{align*}
\text{mdot}_1 := \frac{M_1}{t_1} & \quad \text{mdot}_2 := \frac{M_2}{t_2} & \quad \text{mdot}_3 := \frac{M_3}{t_3} & \quad \text{mdot}_4 := \frac{M_4}{t_4} & \quad \text{mdot}_5 := \frac{M_5}{t_5} & \quad \text{mdot}_6 := \frac{M_6}{t_6} & \quad \text{mdot}_7 := \frac{M_7}{t_7}
\end{align*}
\]

\[
\text{mdot} := \begin{pmatrix}
\text{mdot}_1 \\
\text{mdot}_2 \\
\text{mdot}_3 \\
\text{mdot}_4 \\
\text{mdot}_5 \\
\text{mdot}_6 \\
\text{mdot}_7
\end{pmatrix}
\]

The systematic uncertainty in the mass flow rate is found using the propagation equation:

\[
\text{mdot}(M, t) := \frac{M}{t}
\]
The systematic uncertainty of the mass measurement is:

\[B_M := 0.5 \]

The systematic and random uncertainties in the time measurement are:

\[B_t := 0.01 \quad P_t := 0.5 \]

Finding the partial derivatives to be used in the propagation equation

\[\frac{\partial}{\partial M} m_{\text{dot}}(M, t) \rightarrow \frac{1}{t} \quad \frac{\partial}{\partial t} m_{\text{dot}}(M, t) \rightarrow -\frac{M}{t^2} \]

Substituting the results in the propagation equation:

\[B_{\text{mdot}}(M, t) := \sqrt{\left(\frac{1}{t} \right)^2 \cdot B_M^2 + \left(\frac{-M}{t^2} \right)^2 \cdot \left(B_t^2 + P_t^2 \right)} \]

The resulting uncertainties are now computed and stored in an array:

\[B_{\text{mdot}1} := B_{\text{mdot}}(M_1, t_1) \quad B_{\text{mdot}2} := B_{\text{mdot}}(M_2, t_2) \quad B_{\text{mdot}3} := B_{\text{mdot}}(M_3, t_3) \]

\[B_{\text{mdot}4} := B_{\text{mdot}}(M_4, t_4) \quad B_{\text{mdot}5} := B_{\text{mdot}}(M_5, t_5) \quad B_{\text{mdot}6} := B_{\text{mdot}}(M_6, t_6) \]

\[B_{\text{mdot}7} := B_{\text{mdot}}(M_7, t_7) \]
$B_{\text{mdot}} := \begin{pmatrix} B_{\text{mdot1}} \\ B_{\text{mdot2}} \\ B_{\text{mdot3}} \\ B_{\text{mdot4}} \\ B_{\text{mdot5}} \\ B_{\text{mdot6}} \\ B_{\text{mdot7}} \end{pmatrix}$

The measured frequencies during the calibration process are:

\[
\begin{align*}
 f_1 & := 12.31 \\
 f_2 & := 22.02 \\
 f_3 & := 30.12 \\
 f_4 & := 38.46 \\
 f_5 & := 46.16 \\
 f_6 & := 52.43 \\
 f_7 & := 63.45
\end{align*}
\]

$F := \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \\ f_5 \\ f_6 \\ f_7 \end{pmatrix}$

Performing a linear fit to obtain a calibration curve of the format \(y = m \cdot x \):

\[
F(X) := X \\
S := \text{linfit}(f, \text{mdot}, F)
\]

The resulting slope is:
Finding the standard error of regression:

\[S = 0.035 \quad m := S \]

\[i := 0 \ldots 6 \]

\[N := 7 \]

\[S_Y := \sqrt{\frac{\sum_{i} (m_{i} - m f_{i})^2}{N - 2}} \quad S_Y = 0.102 \]

\[S_{XX} := \sum_{i} (f_{i})^2 - \left(\frac{\sum_{i} f_{i}}{N} \right)^2 \quad S_{XX} = 1.9 \times 10^3 \]

\[f_{bar} := \text{mean}(f) \quad f_{bar} = 37.85 \]

The slope \(m \) can be rewritten as:

\[m := \frac{f_1 m_{dot_1} + f_2 m_{dot_2} + f_3 m_{dot_3} + f_4 m_{dot_4} + f_5 m_{dot_5} + f_6 m_{dot_6} + f_7 m_{dot_7}}{f_1^2 + f_2^2 + f_3^2 + f_4^2 + f_5^2 + f_6^2 + f_7^2} \]

The calibration function for the mass flow rate can be therefore defined as:
where \(f_{\text{new}} \) is the new measured frequency.

Defining the necessary variables needed for plotting the uncertainty of the measured mass flow rate:

\[
\text{NPoints} := 10 \\
\text{fnewSTART} := f_1 \\
\text{fnewEND} := f_7
\]

The array of frequencies needed for plotting can be defined as:

\[
f_{\text{new}, j} := f_{\text{newSTART}} + \left(f_{\text{newEND}} - f_{\text{newSTART}} \right) \frac{j}{\text{NPoints}}
\]

Finding the partial derivatives of the calibration function with respect to each variable for the defined range of plotting frequencies \(f_{\text{new}} \):

\[
\theta_{\text{mdot1}} := \text{for } j \in 0..\text{NPoints} \\
\quad \theta_{\text{mdot1}, j} \leftarrow \frac{\partial}{\partial \text{mdot1}} m_{\text{dot}} \left(f_{\text{new}, j}, f_1, f_2, f_3, f_4, f_5, f_6, f_7, \text{mdot1}, \text{mdot2}, \text{mdot3}, \text{mdot4}, \text{mdot5}, \text{mdot6}, \text{mdot7} \right) \\
\quad \text{return } \theta_{\text{mdot1}}
\]
\[\theta_{\text{mdot2}} := \text{for } j \in 0.. \text{NPoints} \]
\[\theta_{\text{mdot2}} j \leftarrow \frac{\partial}{\partial \text{mdot2}} m_{\text{dot}} \left(f_{\text{new}}, f_1, f_2, f_3, f_4, f_5, f_6, f_7, \text{mdot1}, \text{mdot2}, \text{mdot3}, \text{mdot4}, \text{mdot5}, \text{mdot6}, \text{mdot7} \right) \]
\[\text{return } \theta_{\text{mdot2}} \]

\[\theta_{\text{mdot3}} := \text{for } j \in 0.. \text{NPoints} \]
\[\theta_{\text{mdot3}} j \leftarrow \frac{\partial}{\partial \text{mdot3}} m_{\text{dot}} \left(f_{\text{new}}, f_1, f_2, f_3, f_4, f_5, f_6, f_7, \text{mdot1}, \text{mdot2}, \text{mdot3}, \text{mdot4}, \text{mdot5}, \text{mdot6}, \text{mdot7} \right) \]
\[\text{return } \theta_{\text{mdot3}} \]

\[\theta_{\text{mdot4}} := \text{for } j \in 0.. \text{NPoints} \]
\[\theta_{\text{mdot4}} j \leftarrow \frac{\partial}{\partial \text{mdot4}} m_{\text{dot}} \left(f_{\text{new}}, f_1, f_2, f_3, f_4, f_5, f_6, f_7, \text{mdot1}, \text{mdot2}, \text{mdot3}, \text{mdot4}, \text{mdot5}, \text{mdot6}, \text{mdot7} \right) \]
\[\text{return } \theta_{\text{mdot4}} \]

\[\theta_{\text{mdot5}} := \text{for } j \in 0.. \text{NPoints} \]
\[\theta_{\text{mdot5}} j \leftarrow \frac{\partial}{\partial \text{mdot5}} m_{\text{dot}} \left(f_{\text{new}}, f_1, f_2, f_3, f_4, f_5, f_6, f_7, \text{mdot1}, \text{mdot2}, \text{mdot3}, \text{mdot4}, \text{mdot5}, \text{mdot6}, \text{mdot7} \right) \]
\[\text{return } \theta_{\text{mdot5}} \]

\[\theta_{\text{mdot6}} := \text{for } j \in 0.. \text{NPoints} \]
\[\theta_{\text{mdot6}} j \leftarrow \frac{\partial}{\partial \text{mdot6}} m_{\text{dot}} \left(f_{\text{new}}, f_1, f_2, f_3, f_4, f_5, f_6, f_7, \text{mdot1}, \text{mdot2}, \text{mdot3}, \text{mdot4}, \text{mdot5}, \text{mdot6}, \text{mdot7} \right) \]
\[\text{return } \theta_{\text{mdot6}} \]
\[\theta_{\text{mdot7}} := \text{for } j \in 0.. \text{NPoints} \]
\[\theta_{\text{mdot7}}_j \leftarrow \frac{\partial}{\partial \text{mdot7}} \text{mdot}\left(f_{\text{new}, j}, f_1, f_2, f_3, f_4, f_5, f_6, f_7, \text{mdot1}, \text{mdot2}, \text{mdot3}, \text{mdot4}, \text{mdot5}, \text{mdot6}, \text{mdot7} \right) \]
\[\text{return } \theta_{\text{mdot7}} \]

\[\theta_{f1} := \text{for } j \in 0.. \text{NPoints} \]
\[\theta_{f1}_j \leftarrow \frac{\partial}{\partial f_1} \text{mdot}\left(f_{\text{new}, j}, f_1, f_2, f_3, f_4, f_5, f_6, f_7, \text{mdot1}, \text{mdot2}, \text{mdot3}, \text{mdot4}, \text{mdot5}, \text{mdot6}, \text{mdot7} \right) \]
\[\text{return } \theta_{f1} \]

\[\theta_{f2} := \text{for } j \in 0.. \text{NPoints} \]
\[\theta_{f2}_j \leftarrow \frac{\partial}{\partial f_2} \text{mdot}\left(f_{\text{new}, j}, f_1, f_2, f_3, f_4, f_5, f_6, f_7, \text{mdot1}, \text{mdot2}, \text{mdot3}, \text{mdot4}, \text{mdot5}, \text{mdot6}, \text{mdot7} \right) \]
\[\text{return } \theta_{f2} \]

\[\theta_{f3} := \text{for } j \in 0.. \text{NPoints} \]
\[\theta_{f3}_j \leftarrow \frac{\partial}{\partial f_3} \text{mdot}\left(f_{\text{new}, j}, f_1, f_2, f_3, f_4, f_5, f_6, f_7, \text{mdot1}, \text{mdot2}, \text{mdot3}, \text{mdot4}, \text{mdot5}, \text{mdot6}, \text{mdot7} \right) \]
\[\text{return } \theta_{f3} \]
\[\theta_{f4} := \begin{cases} \text{for } j \in 0..\text{NPoints} \\
\quad \theta_{f4j} \leftarrow \frac{\partial}{\partial f4} \mdot f_{\text{newj}}(f_{\text{new}}, f_1, f_2, f_3, f_4, f_5, f_6, f_7, \mdot f_{\text{1}}, \mdot f_{\text{2}}, \mdot f_{\text{3}}, \mdot f_{\text{4}}, \mdot f_{\text{5}}, \mdot f_{\text{6}}, \mdot f_{\text{7}}) \\
\text{return } \theta_{f4} \end{cases} \]

\[\theta_{f5} := \begin{cases} \text{for } j \in 0..\text{NPoints} \\
\quad \theta_{f5j} \leftarrow \frac{\partial}{\partial f5} \mdot f_{\text{newj}}(f_{\text{new}}, f_1, f_2, f_3, f_4, f_5, f_6, f_7, \mdot f_{\text{1}}, \mdot f_{\text{2}}, \mdot f_{\text{3}}, \mdot f_{\text{4}}, \mdot f_{\text{5}}, \mdot f_{\text{6}}, \mdot f_{\text{7}}) \\
\text{return } \theta_{f5} \end{cases} \]

\[\theta_{f6} := \begin{cases} \text{for } j \in 0..\text{NPoints} \\
\quad \theta_{f6j} \leftarrow \frac{\partial}{\partial f6} \mdot f_{\text{newj}}(f_{\text{new}}, f_1, f_2, f_3, f_4, f_5, f_6, f_7, \mdot f_{\text{1}}, \mdot f_{\text{2}}, \mdot f_{\text{3}}, \mdot f_{\text{4}}, \mdot f_{\text{5}}, \mdot f_{\text{6}}, \mdot f_{\text{7}}) \\
\text{return } \theta_{f6} \end{cases} \]

\[\theta_{f7} := \begin{cases} \text{for } j \in 0..\text{NPoints} \\
\quad \theta_{f7j} \leftarrow \frac{\partial}{\partial f7} \mdot f_{\text{newj}}(f_{\text{new}}, f_1, f_2, f_3, f_4, f_5, f_6, f_7, \mdot f_{\text{1}}, \mdot f_{\text{2}}, \mdot f_{\text{3}}, \mdot f_{\text{4}}, \mdot f_{\text{5}}, \mdot f_{\text{6}}, \mdot f_{\text{7}}) \\
\text{return } \theta_{f7} \end{cases} \]

\[\theta_{f\text{new}} := m \]

This last derivative is independent of \(f_{\text{new}} \).

The systematic and random uncertainties in the frequency measurements are:
\(B_f := 0.5 \quad P_f := 0.5 \)

The systematic uncertainty of the frequency measured by the data acquisition program is:

\(B_{f_{\text{new}}} := 0.25 \)

After substituting everything into the uncertainty propagation equation, a plot for the uncertainty in the mass flow rate can be obtained.

The propagation equation becomes:
\[U_{\text{mdot}} := \begin{cases} 4S_Y^2 \frac{1}{N} \left[\frac{(f_{\text{new}} - f_{\text{bar}})^2}{S_{XX}} \right] + \theta_{\text{mdot1}}^2 B_{\text{mdot1}}^2 + \theta_{\text{mdot2}}^2 B_{\text{mdot2}}^2 + \theta_{\text{mdot3}}^2 B_{\text{mdot3}}^2 + \theta_{\text{mdot4}}^2 B_{\text{mdot4}}^2 \cdots \\
+ \theta_{\text{mdot5}}^2 B_{\text{mdot5}}^2 + \theta_{\text{mdot6}}^2 B_{\text{mdot6}}^2 + \theta_{\text{mdot7}}^2 B_{\text{mdot7}}^2 \cdots \\
+ 2\theta_{\text{mdot1}}^2 \theta_{\text{mdot2}}^2 B_{\text{mdot1}}^2 B_{\text{mdot2}}^2 + 2\theta_{\text{mdot1}}^2 \theta_{\text{mdot3}} B_{\text{mdot1}}^2 B_{\text{mdot3}}^2 + 2\theta_{\text{mdot1}}^2 \theta_{\text{mdot4}} B_{\text{mdot1}}^2 B_{\text{mdot4}}^2 \cdots \\
+ 2\theta_{\text{mdot2}}^2 \theta_{\text{mdot3}}^2 B_{\text{mdot2}}^2 B_{\text{mdot3}}^2 + 2\theta_{\text{mdot2}}^2 \theta_{\text{mdot4}} B_{\text{mdot2}}^2 B_{\text{mdot4}}^2 \cdots \\
+ 2\theta_{\text{mdot3}}^2 \theta_{\text{mdot5}}^2 B_{\text{mdot3}}^2 B_{\text{mdot5}}^2 + 2\theta_{\text{mdot3}}^2 \theta_{\text{mdot6}} B_{\text{mdot3}}^2 B_{\text{mdot6}}^2 \cdots \\
+ 2\theta_{\text{mdot4}}^2 \theta_{\text{mdot5}}^2 B_{\text{mdot4}}^2 B_{\text{mdot5}}^2 + 2\theta_{\text{mdot4}}^2 \theta_{\text{mdot6}} B_{\text{mdot4}}^2 B_{\text{mdot6}}^2 \cdots \\
+ \left(B_f^2 + P_f^2 \right) \left(\theta_{f1}^2 + \theta_{f2}^2 + \theta_{f3}^2 + \theta_{f4}^2 + \theta_{f5}^2 + \theta_{f6}^2 + \theta_{f7}^2 \right) + 2\theta_{f1}^2 \theta_{f2}^2 B_f^2 \cdots \\
+ 2\theta_{f1}^2 \theta_{f3} B_f^2 + 2\theta_{f1}^2 \theta_{f4} B_f^2 + 2\theta_{f1}^2 \theta_{f5} B_f^2 + 2\theta_{f1}^2 \theta_{f6} B_f^2 + 2\theta_{f1}^2 \theta_{f7} B_f^2 + 2\theta_{f2}^2 \theta_{f3} B_f^2 \cdots \\
+ 2\theta_{f2}^2 \theta_{f4} B_f^2 + 2\theta_{f2}^2 \theta_{f5} B_f^2 + 2\theta_{f2}^2 \theta_{f6} B_f^2 + 2\theta_{f2}^2 \theta_{f7} B_f^2 + 2\theta_{f3}^2 \theta_{f4} B_f^2 + 2\theta_{f3}^2 \theta_{f5} B_f^2 \cdots \\
+ 2\theta_{f3}^2 \theta_{f6} B_f^2 + 2\theta_{f3}^2 \theta_{f7} B_f^2 + 2\theta_{f4}^2 \theta_{f5} B_f^2 + 2\theta_{f4}^2 \theta_{f6} B_f^2 + 2\theta_{f4}^2 \theta_{f7} B_f^2 + 2\theta_{f5}^2 \theta_{f6} B_f^2 \cdots \\
+ 2\theta_{f5}^2 \theta_{f7} B_f^2 + 2\theta_{f6}^2 \theta_{f7} B_f^2 + \left(B_{\text{fnew}}^2 \right)^2 \end{cases} \]

The uncertainty in mass flow rate can now be plotted as a function of the new measured frequency:
Performing a quadratic least squares regression of the uncertainty curve:

\[
F(X) := \begin{pmatrix} X^2 \\ X \\ 1 \end{pmatrix} \quad S := \text{linfit}(f_{\text{new}}, U_{\text{mdot}}, F)
\]

\[
S = \begin{pmatrix} 1.013 \times 10^{-4} \\ -7.577 \times 10^{-3} \\ 0.224 \end{pmatrix}
\]

The uncertainty in mass flow rate can be defined as the following function:

\[
U_{\text{mdot}}(f) := F(f) \cdot S
\]

Recall that:

\[
\text{mdot} = f \cdot m
\]

Therefore:

\[
U_{\text{mdot}}(\text{mdot}) := F\left(\frac{\text{mdot}}{m}\right) \cdot S
\]

For example, if the measurement is 1.36 lb/s, the uncertainty associated with that measurement is:

\[
U_{\text{mdot}}(1.36) = 0.083
\]
PART 2. Calculation of the uncertainty in the fouling resistance with values obtained during the test run.

The data reduction equation for the experiment is:

$$R_f = \frac{1}{U_f} - \frac{1}{U_c}$$

where

$$U = \frac{Q}{A \cdot \text{LMTD}}$$

Substituting in the equations for the internal area and the log mean temperature difference yields:

$$R_f = \frac{1}{\text{mdot}_w \cdot c_{pw} \left(\frac{T_{2\text{wout}} - T_{2\text{win}}}{T_{2\text{win}} - T_{2\text{wout}}} \right)} - \frac{1}{\text{mdot}_w \cdot c_{pw} \left(\frac{T_{1\text{wout}} - T_{1\text{win}}}{T_{1\text{win}} - T_{1\text{wout}}} \right)}$$

where

$$c_{pw} = 4182 \frac{J}{\text{kg \cdot K}}$$

Simplifying the equation yields:
The sample readings of the test run are:

$L := 9\text{ft}$

$T_{1\text{win}} := 99.0\ \text{F}$

$T_{2\text{win}} := 100.2\ \text{F}$

$T_{1\text{wout}} := 100.6\ \text{F}$

$T_{2\text{wout}} := 101.9\ \text{F}$

$\text{mdot}_{1\w} := 0.99\ \text{lb/s}$

$\text{mdot}_{2\w} := 0.98\ \text{lb/s}$
$T_{1_{\text{ref}}} := 102.0 \, ^\circ F$

$T_{2_{\text{ref}}} := 103.9 \, ^\circ F$

$D_i := 0.65 \, \text{in}$

From the uncertainty analysis of the mass flow rate (Part 1):

$$B_{\dot{m} \dot{w}1} := U_{\dot{m} \dot{w}1} \left(\frac{\dot{m} \dot{w}1}{\text{lb}} \right) \frac{s}{\text{lb}}$$

$$B_{\dot{m} \dot{w}2} := U_{\dot{m} \dot{w}2} \left(\frac{\dot{m} \dot{w}2}{\text{lb}} \right) \frac{s}{\text{lb}}$$

$$\frac{B_{\dot{m} \dot{w}1}}{\dot{m} \dot{w}1} = 9.201\%$$

$$\frac{B_{\dot{m} \dot{w}2}}{\dot{m} \dot{w}2} = 9.35\%$$

The systematic uncertainty of the thermocouple reading is:

$B_T := 0.8$

The uncertainties in length and diameter measurements are negligible:

$B_{D,i} := 0 \quad B_L := 0$

Finding the partial derivatives of the data reduction equation.

$$\theta_{D,i} := \frac{d}{dD_i} R_i(D_i, L, \dot{m} \dot{w}1, T_{1_{\text{ref}}}, T_{1_{\text{win}}}, T_{1_{\text{wout}}}, \dot{m} \dot{w}2, T_{2_{\text{ref}}}, T_{2_{\text{win}}}, T_{2_{\text{wout}}})$$
\[
\theta_L = \frac{\partial}{\partial L} R_f\left(D_i, L, \text{mdot}_1 w, T_{1\text{ref}}, T_{1\text{win}}, T_{1\text{wout}}, \text{mdot}_2 w, T_{2\text{ref}}, T_{2\text{win}}, T_{2\text{wout}}\right)
\]

\[
\theta_{\text{mdot}_1 w} = \frac{\partial}{\partial \text{mdot}_1 w} R_f\left(D_i, L, \text{mdot}_1 w, T_{1\text{ref}}, T_{1\text{win}}, T_{1\text{wout}}, \text{mdot}_2 w, T_{2\text{ref}}, T_{2\text{win}}, T_{2\text{wout}}\right)
\]

\[
\theta_{\text{mdot}_2 w} = \frac{\partial}{\partial \text{mdot}_2 w} R_f\left(D_i, L, \text{mdot}_1 w, T_{1\text{ref}}, T_{1\text{win}}, T_{1\text{wout}}, \text{mdot}_2 w, T_{2\text{ref}}, T_{2\text{win}}, T_{2\text{wout}}\right)
\]

\[
\theta_{T_{1\text{win}}} = \frac{\partial}{\partial T_{1\text{win}}} R_f\left(D_i, L, \text{mdot}_1 w, T_{1\text{ref}}, T_{1\text{win}}, T_{1\text{wout}}, \text{mdot}_2 w, T_{2\text{ref}}, T_{2\text{win}}, T_{2\text{wout}}\right)
\]

\[
\theta_{T_{2\text{win}}} = \frac{\partial}{\partial T_{2\text{win}}} R_f\left(D_i, L, \text{mdot}_1 w, T_{1\text{ref}}, T_{1\text{win}}, T_{1\text{wout}}, \text{mdot}_2 w, T_{2\text{ref}}, T_{2\text{win}}, T_{2\text{wout}}\right)
\]

\[
\theta_{T_{1\text{wout}}} = \frac{\partial}{\partial T_{1\text{wout}}} R_f\left(D_i, L, \text{mdot}_1 w, T_{1\text{ref}}, T_{1\text{win}}, T_{1\text{wout}}, \text{mdot}_2 w, T_{2\text{ref}}, T_{2\text{win}}, T_{2\text{wout}}\right)
\]

\[
\theta_{T_{2\text{wout}}} = \frac{\partial}{\partial T_{2\text{wout}}} R_f\left(D_i, L, \text{mdot}_1 w, T_{1\text{ref}}, T_{1\text{win}}, T_{1\text{wout}}, \text{mdot}_2 w, T_{2\text{ref}}, T_{2\text{win}}, T_{2\text{wout}}\right)
\]

\[
\theta_{T_{1\text{ref}}} = \frac{\partial}{\partial T_{1\text{ref}}} R_f\left(D_i, L, \text{mdot}_1 w, T_{1\text{ref}}, T_{1\text{win}}, T_{1\text{wout}}, \text{mdot}_2 w, T_{2\text{ref}}, T_{2\text{win}}, T_{2\text{wout}}\right)
\]
The correlated systematic uncertainties are:

\[\begin{align*}
\theta_{T2,\text{ref}} :&= \frac{\partial}{\partial T2_{\text{ref}}} R_f \left(D_i, L, \dot{m}_{\text{dot1},w}, T1_{\text{ref}}, T1_{\text{win}}, T1_{\text{wout}}, \dot{m}_{\text{dot2},w}, T2_{\text{ref}}, T2_{\text{win}}, T2_{\text{wout}} \right) \\
\text{mdot1}_w, \text{mdot2}_w, &\quad T1_{\text{ref}}, T2_{\text{ref}}, T1_{\text{win}}, T2_{\text{win}}, T1_{\text{wout}}, T2_{\text{wout}}
\end{align*} \]

Substituting the calculated values in the propagation equation:

\[
B_{R, f} := \sqrt{\theta_{D,i}^2 B_{D,i}^2 + \theta_L^2 B_L^2 + \theta_{\text{mdot1},w}^2 B_{\text{mdot1},w}^2 + \theta_{\text{mdot2},w}^2 B_{\text{mdot2},w}^2 + \theta_{T1,\text{ref}}^2 B_{T}^2 + \theta_{T2,\text{ref}}^2 B_{T}^2 + \theta_{T1,\text{win}}^2 B_{T}^2 + \theta_{T2,\text{win}}^2 B_{T}^2 + \theta_{T1,\text{wout}}^2 B_{T}^2 + \theta_{T2,\text{wout}}^2 B_{T}^2 + \cdots} \\
+ \sqrt{2 \theta_{\text{mdot1},w}^2 \theta_{\text{mdot2},w}^2 B_{\text{mdot1},w} B_{\text{mdot2},w}}
\]

Finally, the systematic uncertainty of the fouling resistance is:

\[B_{R, f} = 6.556 \times 10^{-5} \text{ hr*ft}^2*\text{R/BTU} \]

The random uncertainty \(P \) is taken as 2 times the standard deviation of the fouling resistance readings at constant conditions.

\[P_{R, f} = 2.1.1 \times 10^{-5} \text{ hr*ft}^2*\text{R/BTU} \]

The total uncertainty in the fouling resistance is then:

\[U_{R, f} = \sqrt{B_{R, f}^2 + P_{R, f}^2} \frac{\text{hr*ft}^2*\text{R}}{\text{BTU}} \]

\[U_{R, f} = 6.915 \times 10^{-5} \frac{\text{hr*ft}^2*\text{R}}{\text{BTU}} \]
The resulting uncertainty can be expressed as a percentage:

\[
\frac{U_{R,f}}{R_f(D_1, L, \frac{\text{mdot}_1}{\text{w}}, T_{1\text{ref}}, T_{1\text{win}}, T_{1\text{wout}}, \frac{\text{mdot}_2}{\text{w}}, T_{2\text{ref}}, T_{2\text{win}}, T_{2\text{wout}}) \frac{\text{hr ft}^2}{\text{BTU}}} = 48.708\%
\]
APPENDIX C

APPARATUS PHOTOGRAPHS
C1. Supporting Structure
C2. Test Sections Lay Out
C3. Outlet Manifold
C4. Installed Test Sections
C5. Mixing Tank and Pump
C6. Water-Loop Heat Exchangers
C7. Rupture Disc
C8. Control Panel
C9. Completed Experimental Apparatus
C1. Supporting Structure

C2. Test Sections Lay Out
C3. Outlet Manifold

C4. Installed Test Sections
C5. Mixing Tank and Pump

C6. Water-Loop Heat Exchangers
C7. Rupture Disc

C8. Control Panel
Completed Experimental Apparatus